Talk:Balanced field takeoff

Latest comment: 1 year ago by Dolphin51 in topic Regulatory background

Well, no! A "balanced field takeoff" is a takeoff at a balanced field! This article is true only if the balanced field has dimensions which match exactly the requirements of the aircraft taking off - no longer and no shorter. Runway length, runoff area etc. Paul Beardsell 10:34, 18 September 2006 (UTC)Reply


The inverse is actually the case. The concept at play is that, by reducing takeoff thrust, all available runway is used in the event of a rejection at or near V1. A significant amount of published information is available regarding this on my University of Waterloo Research Homepage. Shane Pinder 02 October 2006

Well, that is an angle I had not appreciated. But what I wrote is (inadvertently) still true, I think. Regardless, the article creates a false impression or is just incorrect. As you seem to know about this, please fix the article. Paul Beardsell 09:21, 2 October 2006 (UTC)Reply

I've added a {{dubious}} tag as what is written has no citation and what Shane Pinder writes above sounds more like it. Paul Beardsell 16:44, 4 October 2006 (UTC)Reply

You might notice that I also wrote the original page . . . nonetheless, I will acknowledge that some clarification may be necessary. (I tend to find this a little too obvious, as it is my field of research. I'm told that it's a common problem.) Stay tuned for updates. Shane Pinder 08 October 2006

Perhaps it would be more clear to state that one creates a balanced field situation by choosing a V1, that allows for either a continuation the takeoff with one engine or reject the takeoff on the remaining runway, with minimum takeoff thrust. The goal is to reduce takeoff thrust as much as possible (and therefore engine temperature and stress), while still retaining runway safety margins. Blearned 02:06, 11 September 2007 (UTC)Reply

Reducing thrust on takeoff is only remotely related to the BFL concept. It however can serve two purposes: 1) Avoiding being VMC-limited in cases of low aircraft weight, and 2) saving engine life and reducing probability of engine failure. Iediteverything (talk) 21:38, 21 August 2008 (UTC)Reply

Clarification and citations and review required edit

I still find this BFT thingee difficult to understand. And it is not as though aviation terminology is a complete stranger to me. I think the article, as it stands, is (1) not correct, strictly speaking and (2) is not readily understandable by the average WP reader.

"Balanced field takeoff is the theoretical principle". No, it is not. It is a term used for something. That's a question of good English, not of aviation. The something for which BFT is a/the name is not "theoretical" - it is practical, used everyday. It is not a "principle", it is a practice.

No source is cited. There must be an official definition of this term.

The explanation uses jargon which is itself unexplained. And terms which have their own WP articles are not linked.

I write this as someone not best suited to make the improvements, but as a frustrated reader. Please help!

Paul Beardsell (talk) 08:27, 21 September 2009 (UTC)Reply

But I've made some effort and I think I have improved and clarified the article. But work remains! Please review and fix. Paul Beardsell (talk) 08:47, 21 September 2009 (UTC)Reply
This article has been neglected for a long time but I am pleased to see User:Psb777 and others have done something positive to improve it. I have made some refinements to the article. Following is my explanation of some of my edits:
(1) It was suggested that BFL had something to do with prolonging engine life and improving engine reliability. That is not correct. Reducing thrust is a reduced-thrust takoff (or reduced power takeoff). It is entirely possible to carry out balanced field takeoffs without any regard for reduced thrust or power.
(2) It was suggested that increasing mass reduces braking performance. This would be true if braking is reliant on aerodynamic braking such as reverse thrust or a tail parachute. However, on most runways the primary braking force is that due to wheel brakes. The braking coefficient of friction is approximately constant so the braking force is proportional to weight on wheels. More weight on wheels means a greater braking force, but also a greater mass and therefore the same deceleration. As a first approximation, braking performance is unaffected by the aircraft weight (or mass).
(3) It was suggested that balanced field takeoff is affected by density altitude and engine thrust. It is much more accurate to say takeoff performance is affected by engine thrust which, in turn, is affected by air pressure and air temperature. Air density determines the conversion of indicated airspeed to true airspeed but this effect is minor compared with the lapse of engine thrust due to increasing pressure altitude.
(4)I have deleted the paragraph about takeoffs on runways shorter than the balanced field length, especially the bit about such takeoffs being a bit less than legal.
Now that we have some interest and momentum towards raising the standard of this article, let’s keep it going. I will try to dig out some more references and in-line citations. Dolphin51 (talk) 12:08, 21 September 2009 (UTC)Reply

I've numbered Dolphin51's points so I can reference them

(1) That A is a member of set B does not mean it is not also a member of set C. The definition you cite for BFT can be made to apply for a particular aircraft and airfield (taking into account a/c mass, flap deployment, density altitude, runway surface) by adjusting the engine thrust. And this calculation is done everyday, regularly, by airline pilots. They make a takeoff into a BFT deliberately, by calculation, in order to be kind to the engines. They *also* do the calculation to see if a legal takeoff is possible i.e. they have at least the min BFT distance available at max thrust. I think Dolphin51 misses the point of BFT entirely, and now the article does too.

(2) You're right.

(3) The article, as I left it, did not say what you say it said. The calculation of what the minimum BFT length is, on a particular day, depends upon the factors listed.

Later: And density altitude is *critically* important for the required take off speed, not just engine thrust. At a high airport on a hot day you'll need so much runway the only way to perform a BFT will be to offload cargo &/or pax. Paul Beardsell (talk) 19:56, 22 September 2009 (UTC)Reply

(4) it *is* possible to take off with less than the minimum BFT length available. It is done every day, legally, by private pilots and by military pilots and by the pilots of cargo-only aircraft. It is *also* done, occasionally and illegally, sometimes deliberately and sometimes by mistake, by airline pilots. Is this not of interest?

Paul Beardsell (talk) 23:34, 21 September 2009 (UTC)Reply

Definition of BFT edit

On-line references (which are not Wikipedia!) do not agree with how BFT is currently defined here. E.g. at [1]: "The BFL is determined by the condition that the distance to continue a takeoff following failure of an engine at some critical speed (Vfail) be equal to the distance required to abort it. It represents the 'worst case' scenario, since failure at a lower speed requires less distance to abort, whilst failure at a higher speed requires less distance to continue the takeoff." See also [2] [3] [4] [5]. I think the FAR regs (I don't have a copy) used as reference must say something different to the definition currently in the article. Paul Beardsell (talk) 23:59, 21 September 2009 (UTC)Reply

I am in agreement with the explanation of BFT given in [6]. If you feel the current definition in the article is not compatible with this source please feel free to edit the article to make it compatible.
Notice that the explanation given in the above source says nothing about reducing thrust to preserve the engine. You have written that airline pilots on a daily basis carry out takeoffs that are both BFT and reduced thrust. I don't disagree with that, but I can say that many BFT takeoffs are also carried out at maximum takeoff thrust. It is reasonable to say that thrust setting is immaterial to a definition of balance field takeoff. My position is that BFT is achieved by the appropriate choice of V1, not an appropriate choice of engine thrust. Boeing and some other manufacturers of transport category airplanes provide a web chart as a simple graphical means of selecting a single value of V1/VR ratio (or V1), and this single value achieves the balance between accelerate-stop and accelerate-go distances.
You have written that private pilots takeoff legally on runways shorter than BFL for the aircraft weight. (The article presenlty contains no reference or in-line citation to support this matter so it should not be restored until a source is identified.) Can you explain how this is possible? In the case of a transport category airplane, the BFL is the shortest runway length at which takeoff can be made legally. If the runway is shorter than BFL the requirement for accelerate-stop distance can be satisfied, or the requirement for accelerate-go distance can be satisfied, but not both. Your statement is correct for single-engine airplanes, and normal category multi-engine airplanes, but only because accelerate-stop distance and one-engine-inoperative takeoff distance are usually not defined for such airplanes.
Balanced field is terminology not used in airworthiness standards such as Part 25 of the Federal Aviation Regulations. §25.109 talks about accelerate-stop distance; and §25.111 and §25.113 talk about takeoff distances, but balanced field is not included and is not necessary in the regulations. These regulations can be viewed at:
  • §25.109 Accelerate-stop distance [7]
  • §25.111 Takeoff path [8]
  • §25.113 Takeoff distance and takeoff run [9]
Dolphin51 (talk) 05:22, 22 September 2009 (UTC)Reply
Look, I'm sorry, but plainly the article partly misrepresents the BFT concept and discussions here demonstrate several misunderstanding re aviation in general. Your questioning that it is possible for a private pilot to take off in under the minimum BFT length for his aircraft (mass, thrust, config) at the given airport (runway length, weather, wind etc) demonstrates this. It is both done (by me and countless others) as standard procedure at short strips and it is legal (otherwise I would not own up to it here). Also: A (good) pilot with surplus thrust will deliberately turn many a take-off into a BFT by reducing thrust so as to use more runway length - you continually seem to deny this point. A BFT is not a property of the airfield! It is a property of the given takeoff and that depends upon choices made by the pilot as well as other factors. If more thrust is used than is necessary then there is MORE takeoff length available than necessary to abort - and such a takeoff is *not* BALANCED (the full stop length and safe take off length are not equal!) and so is not a BFT. The margin of safety is more than is necessary. And doubtless the airlines ops manual tells the pilot in such circumstance to "calculate a reduced thrust to so as execute a BFT" - or words to that effect. Paul Beardsell (talk) 14:21, 22 September 2009 (UTC)Reply
I'm pleased to see my hunch satisfied that it was wrong to cite the FAA citation to support BFT as it was then defined in the article - it was wrong and the FAA makes mistakes but usually not of that type. As you discovered: they do not define the term so the citation was improper. I'm glad to see it fixed. What the regs say is that the available distance must be MORE THAN OR EQUAL TO the distance required to abort having reached V1. A BFT obeys that rule by making the two distances EQUAL using the only reasonably available mechanism available to the pilot - the thrust is reduced. Paul Beardsell (talk) 14:21, 22 September 2009 (UTC)Reply
Now, I regret if my frustration is showing BUT the point of this discussion is to make a better article. I'm going to improve it later and I ask that some thought is applied before they are rolled back, if they are. Paul Beardsell (talk) 14:21, 22 September 2009 (UTC)Reply
But, importantly, we cannot complete our work here until we are clear as to what V1 is and, I suggest, we are not. See Talk:V_speeds#V1_and_the_Balanced_Field_Takeoff Paul Beardsell (talk) 20:56, 22 September 2009 (UTC)Reply
I continue to be puzzled by your comment that private pilots takeoff on runways shorter than the BFL. I have asked you to explain but, apart from strong assertions, you haven’t attempted to do so. Perhaps you are talking about private pilots flying normal category airplanes such as propeller-driven Cessnas and Pipers. These airplanes have neither accelerate-stop distance information nor one-engine-inoperative takeoff distance information so the concept of BFL is undefined and it isn’t reasonable to say they are taking off at less than BFL. If this is not an explanation for your comments please take a little time to explain what is meant by implying that a transport category airplane can legally takeoff on a runway shorter than the BFL appropriate to the airplane weight, altitude, temperature, runway wind component etc. For fifteen years I have been teaching pilots of transport category airplanes that it is never possible to takeoff legally on a runway shorter than the BFL appropriate to the airplane weight etc. If the all-engines-operating takeoff distance (the one with the 115% factor) is more limiting than the BFL, as it is sometimes in 3 and 4 engine airplanes, the runway must be even longer than the BFL appropriate to the weight.
Pipers and Cessnas. The accelerate stop distance can easily be determined (or closely estimated) by adding the take-off roll to the landing roll. These figures are published. But forget that! You make the same mistake again: The data doesn't have to be written down in some legal format for a BFT to be possible! You're all wrapped up in documentation and rules - legalities: Many experienced light aircraft pilots are quite capable of judging take off distance and determining decision points by counting fence posts, if necessary. They regularly will be making educated guesses at when best to reduce to max continuous power or raise the u/c. And the rule of thumb to be at half take-off speed 1/3rd down the strip has a similar purpose to BFT claculations. Anyway, a BFT calc or approximation or guess is always possible, if you know your a/c. Paul Beardsell (talk) 05:05, 23 September 2009 (UTC)Reply
You make several mistakes here, to be blunt.
  • You confuse "legal" with "possible". It is possible to drive at 100mph on the public roads, it isn't legal. Similarly a 747 pilot can take off on a runway so short that his wheels just manage to lift off the ground at the very end of the runway. It would be possible but would *NOT* be legal, with paying passengers.
  • Now, if the pilot were a PPL flying his own 747 off his own private strip on a non-commercial op having to use all the strip would likely be legal. Exactly this is done every day on short strips around the world where BFTs would be impossible. And, as private ops in a light twin, they are legal.
  • Read the cited material. BFT does not only apply to multi-engined aircraft, and does not necessarly involve the failure of an engine.
  • The 115% etc is just obfuscation and is adding detail for no good reason - it effects the substance of the argument not at all.
Paul Beardsell (talk) 03:58, 23 September 2009 (UTC)Reply
I agree that good pilots and operators will use reduced thrust for takeoffs on runways that are longer than necessary for the airplane’s weight. This is called a Reduced Thrust Takeoff. My position is that it is a good idea to takeoff using the V1 dictated by balanced field considerations. If using maximum takeoff thrust it is a good idea to use the V1 dictated by balanced field considerations. At reduced takeoff thrust it is also a good idea to use the V1 dictated by balanced field considerations.
As you well know, the definition of V1 is in dispute over at V speeds so we must wait for that until we can settle this. My guess is that the consensus definition of V1 will not allow it have such a high value that a light twin (or even a 737) can do a BFT on a 10km sea-level runway AT FULL THRUST. Becuase that is what you are saying. But I'm just-a-guessing. We need to get a definition of V1. Paul Beardsell (talk) 03:58, 23 September 2009 (UTC)Reply
After deciding to carry out a Reduced Thrust Takeoff, the next question is what takeoff thrust settings should be used? I am familiar with the assumed temperature method. You are suggesting another method in which the pilot determines the takeoff thrust setting at which the BFL exactly equals the runway length available. Entirely sound reasoning.
That is what I read in the cited material. Paul Beardsell (talk) 03:58, 23 September 2009 (UTC)Reply
You seem to be stating that when a pilot uses reduced thrust for takeoff and selects the V1 appropriate to BFL, the takeoff is called a Balanced Field Takeoff. I am stating that considerations of BFL give a single value of V1 (or V1/VR ratio) and this is true for all takeoff thrust settings, not only reduced thrust settings.
BF*L*? Assuming that's BFT. I am saying nothing new and I suggest we watch out for WP:OR here. The definition of BFT says that if the remaining distance to stop and the remining distance to get safely airborne are the same then that is a BFT. If the pilot connives for that to occur by whatever method (loading more cargo, taking off from the intersection, not using flaps, wiggling his feet on the rudder pedals during the roll, OR BY REDUCING THRUST) then that is a BFT by *definition*. Paul Beardsell (talk) 03:58, 23 September 2009 (UTC)Reply
Please take a little time to explain your view about being able to takeoff on runways shorter than the BFL. Very best regards. Dolphin51 (talk) 03:08, 23 September 2009 (UTC)Reply
I have already done so above, and am incredulous that I should be repetitively questioned on this by someone who lectures pilots on aircraft performance. Paul Beardsell (talk) 03:58, 23 September 2009 (UTC)Reply
Thanks Paul. I now see your point of view on carrying out takeoffs with less runway than the BFLength. I intend to focus solely on BFT in transport category airplanes, and I will leave you to add material and citations about BFT in Pipers, Cessnas, military airplanes, cargo airplanes etc. Dolphin51 (talk) 05:19, 23 September 2009 (UTC)Reply

V1 is selected? edit

The article continues to say: "To achieve a balanced field takeoff, V1 is selected so that the one-engine-inoperative takeoff distance is equal to the accelerate-stop distance." I flagged that sentence with {{fact}} because I could not see any support for it in the cited material. And I do not know for sure that the statement is wrong or right. However, my tag has been removed and a citation has been supplied and here it the supplied text: "If we let A be the distance traveled by the airplane along the ground from the original starting point to the point where V1 is reached, and we let B be the additional distance traveled with an engine failure (the same distance to clear an obstacle or to brake to a stop), then the balanced field length is by definition the total distance A+B." Now, that strikes me as being correct, and the source may be authoritative. But, in what way does the cited material support the statement which references it? In particular, where does it say that "V1 is selected"? That must be supported by citation, the inference, if true, would be WP:SYN. I note that the definition of V1 is in dispute at V speeds. Resolving this question may help resolve that issue. In the interim back goes the tag. Paul Beardsell (talk) 13:17, 23 September 2009 (UTC)Reply

Paul, don’t tell me you aren’t conversant with §25.107 Takeoff speeds. Para (a)(2) says V1, in terms of calibrated airspeed, is selected by the applicant … …
If you agree this does in fact say V1 is selected, feel free to add it to the article as an in-line citation. Dolphin51 (talk) 23:43, 23 September 2009 (UTC)Reply


While we continue to commit the sin of WP:OR I think standard practice is not as described. V1 is looked up on a table for the relevant combination of takeoff factors [a/c weight etc, density altiude etc]. The pilot reads out of a table the necessary runway length to get to today's V1 and also the necessary braking distance from that speed, adds the operator's/regulators' fudge factors and then compares that to the total strip length available. If he does not have enough runway length something has to change to permit a legal takeoff. If he has excess runway length he DOES NOT (in my uninformed opinion) modify V1, he calculates (or looks up) a reduced thrust level (thus making engine failure less likely and also improving maintenance costs) so as to use the entire field length. THUS, BY DEFINITION CREATING A BFT. Paul Beardsell (talk) 13:32, 23 September 2009 (UTC)Reply

What is true? Is V1 adjusted and full thrust used thus creating a high speed takeoff that potentially uses all the runway in the case of engine failure? Or is V1 left well alone and thrust reduced and a takeoff at standard speed performed? The latter, surely. Anyway that is my SPECULATION and it remains here. If something else goes in the article it must be supported by citation, Paul Beardsell (talk) 13:32, 23 September 2009 (UTC)Reply


At Talk:V_speeds Dolphin51 has now stated that for a BFT there is only one possible V1. So, V1 is not a matter of choice, it is not selected. So, all agree: Matter closed and the article has been amended appropriately. Paul Beardsell (talk) 01:38, 24 September 2009 (UTC)Reply

Removed incorrect material re effect of different V1 speeds edit

The following has been removed from the article as the assertions are unsupported by citation and, except for the last bit, are untrue, I think.

A higher V1 leads to a shorter takeoff distance with one-engine-inoperative,[dubious ] and a higher accelerate-stop distance. Conversely, a lower V1 leads to a longer takeoff distance with one-engine-inoperative,[dubious ] and a shorter accelerate-stop distance.

A higher V1 for the same aircraft (with the same mass etc etc) would require a LONGER takeoff distance and thus a LONGER accelerate-stop distance. Similarly: A lower V1 would requires a SHORTER takeoff distance.

Paul Beardsell (talk) 13:49, 23 September 2009 (UTC)Reply

Imagine a mulit-engine airplane taking off at a weight which requires a rotation speed VR of 120 knots. Also imagine V1 is 100 knots. Assuming the critical engine fails at V1, the airplane must accelerate from 100 to 120 knots with one-engine-inoperative before being rotated for lift off. Now imagine V1 is higher - 110 knots. In this second case the acceleration from 100 to 110 knots is done with all engines operating, and it is only the remaining 10 knots from 110 to 120 that must be done with one-engine-inoperative. The distance required to accelerate from 100 to 110 with all engines operating is shorter than the distance to accelerate through this speed range with one-engine-inoperative. Newton's second law of motion. The end result is that the OEI takeoff distance is roughly inversely proportional to the choice of V1. The higher the value of V1, the shorter the OEI takeoff distance. The shortest OEI takeoff distance occurs for V1 equal to VR.
In the case of accelerate-stop distance, in the first case where the airplane must reach V1 of 100 knots and then decelerate to a halt, it requires less distance than the second case where the airplane must reach V1 of 110 knots and then decelerate to a halt. The distance required to accelerate to 100 knots with all engines operating is less than the distance required to accelerate to 110 knots with all engines operating. Similarly the distance required to stop from 100 knots is less than the distance required to stop from 110 knots. The end result is that accelerate-stop distance is roughly proportional to the choice of V1. The higher the value of V1, the longer the accelerate-stop distance. The shortest accelerate-stop distance occurs for V1 equal to Vmcg.
V1 is permitted to be anywhere between Vmcg and VR. The optimum value of V1 is the value that causes the accelerate-stop distance to equal OEI takeoff distance. This single, optimum, value of V1 delivers the shortest permissible distance required for takeoff. When these two distances are equal we say they are balanced and the chosen value of V1 delivers a balanced field takeoff.
You have written that the pilot determines V1 by looking in a book but how do you imagine that single value of V1 gets into the book in the first place? Dolphin51 (talk) 23:26, 23 September 2009 (UTC)Reply

What Dolphin51 wrote is this:

A higher V1 leads to a shorter takeoff distance with one-engine-inoperative, and a higher accelerate-stop distance. Conversely, a lower V1 leads to a longer takeoff distance with one-engine-inoperative, and a shorter accelerate-stop distance.

It seems what he meant to write was this:

A higher V1 leads to a shorter remaining takeoff distance with when one engine becomes inoperative at that speed, and a higherlonger required accelerate-stop distance at that speed. Conversely, a lower V1 leads to a longer remaining takeoff distance with when one engine becomes inoperative at that speed and a shorter accelerate-stop distance.

But the point is moot now Dolphin51 has established there is only one possible V1 for a BFT.

Paul Beardsell (talk) 01:47, 24 September 2009 (UTC)Reply

Dolphin51 wholeheartedly agrees that for a BFT there is one, and only one, value of V1. In the entire field of large airplane performance, considering all the different requirements, there is only one requirement that leads to a single, unambiguous, value of V1 and that is the balanced field takeoff. All other requirements (such as climb gradient, obstacle clearance etc.) lead only to a range of permissible V1 speeds. Dolphin51 (talk) 02:03, 24 September 2009 (UTC)Reply

Consider it one of my many character flaws, but I have to point out that this is a complete about face from your earlier and recent position that a pilot selects various V1 speeds depending on field length so as to achieve a BFT. A whole lot of unnecessary energy has been expended to get here. Or are you going to say you have not resiled from that position? Paul Beardsell (talk) 02:32, 24 September 2009 (UTC)Reply

You provided me with a website containing a fabulous diagram that has two lines, one representing ASD and the other TOD (OEI), showing the way the two distances behave for varying V1, and showing that where the two lines intersect there is the BFL and the single value of V1 that delivers that BFL. I have my own set of similar diagrams for the overhead projector, and I have been talking to them since 1994. Hopefully, all that I have written here has been consistent with that diagram. You seem to think not, so if that is so I apologise.
The diagram shows V1 varying continuously from a low value to a high value. Perhaps I described this as the pilot selects various V1 speeds. I could have written imagine V1 varying continuously from Vmcg to VR, but that sounds a bit too much like the engineer talking.
As to exactly who selects V1, it goes something like this. The FAA specifies that V1 must be selected somewhere between Vmcg and VR. The airplane manufacturer's Performance Department selects a large bunch of V1 values and runs them through the computer to produce ASD and TOD (OEI) information. That information ends up in the flight manual and performance manual. If the aircraft is operated by an airline, the airline's Performance Department or Jeppesen selects certain of the information out of the manuals and publishes it in convenient tables for the Captains to use on the flight deck. If it is a Learjet or Citation that isn't operated by an airline, the pilot doesn't have the luxury of neat tables of data so he must make his own selection of V1, VR and V2 using the performance charts. Dolphin51 (talk) 03:17, 24 September 2009 (UTC)Reply
But the subject of this article is balanced field takeoff. Only one V1 exists for any given BFT, it is not a question of selection in the sense of whimsy, which is how any reader of the article would very likely interprete what was written in the article. I know now we agree on this point, I know now you mean "selection of the one correct value out of the tables", but that is *not* how it read. I am simply trying to get an article which as unambiguously as possible tells the layman reader what a BFT is. Paul Beardsell (talk) 11:37, 24 September 2009 (UTC)Reply

Definition of BFT - reprise edit

At [10]: "The BFL is determined by the condition that the distance to continue a takeoff following failure of an engine at some critical speed (Vfail) be equal to the distance required to abort it. It represents the 'worst case' scenario, since failure at a lower speed requires less distance to abort, whilst failure at a higher speed requires less distance to continue the takeoff."

However the article (currently) says that the two distances which must be equal at V1 are the remaining stop distance available and the remaining distance to achieve V2. The implication is that the required stop distance must be equal to the available distance.

If however we substitute "required" for "available" then (despite the vehemence with which I have argued the contrary) a BFT can be performed with less than the runway length available. E.g. a 737 can perform a BFT on a 20km runway.

If that is true the reason why a pilot might reduce thrust is to make the takeoff distance = accelerate-stop distance required and NOT to make the takeoff distance = accerate-stop distance available. (Of course the required distance must be less than the available distance but that is, for the purpose of this discussion, a separate issue.)

BUT THE POINT TO BE SETTLED IS THIS: WHAT IS THE ACCEPTED DEFINITION OF BFT? "AVAILABLE" OR "REQUIRED"?

Paul Beardsell (talk) 03:28, 24 September 2009 (UTC)Reply

The initial version of the article says "available". Paul Beardsell (talk) 03:33, 24 September 2009 (UTC)Reply

At [selair.selkirk.bc.ca/training/systems/power-point/.../04V-speeds.ppt] its "required": "A balanced field takeoff is a condition where the accelerate stop distance required (ASDR) is equal to the takeoff distance required (TODR) for a given WAT, aircraft configuration, and runway condition." Paul Beardsell (talk) 03:36, 24 September 2009 (UTC)Reply

My position is that the definition of BFT should talk about distances required. BFLength and the V1 for a BFT can all be determined from the airplane performance manual which presents only distances required. Distances available are related to plots of land on the face of the earth, and information about what is available is found in airport diagrams and similar. I agree that we substitute required for available. Dolphin51 (talk) 03:40, 24 September 2009 (UTC)Reply
OK, but what is correct? Because the sources seem divided. Paul Beardsell (talk) 11:25, 24 September 2009 (UTC)Reply
The current opening sentence in the article contains some words that make no sense to me. I believe they are redundant and should be removed. Alternatively, I am willing to be convinced that they are necessary in the sentence. The opening sentence, with the redundant words struck out, is as follows:
In aviation, a balanced field takeoff is a takeoff in which the distance required to complete the takeoff should an engine fail at lowest possible speed to continue the takeoff equals the distance required and available to reject the takeoff and come to a halt.
Dolphin51 (talk) 23:01, 24 September 2009 (UTC)Reply

We have numerous citations of sources of information about balanced field length, but so far nothing about balanced field takeoff. However, the slide show at the following website is very useful: Field Takeoff

Slide 18 contains the following wisdom:

A balanced field takeoff is a condition where the accelerate-stop distance required (ASDR) is equal to the takeoff distance required (TODR) for a given weight, altitude, temperature, aircraft configuration and runway condition. When the takeoff field length is balanced, it results in the shortest possible runway length for the given conditions.

I can live with that. Dolphin51 (talk) 04:13, 1 October 2009 (UTC)Reply

Yes, starts well but ends not quite so brilliantly. To you (and now me) this makes sense but it is far too confusing to our typically intelligent reader new to the concept. The last sentence is not strictly correct in several ways. (1) The words "it results in" are wrong! It's the other way around, if anything. (2) A "takeoff field" is not balanced. This was my earliest mistake on this page (see my first comment, at the very top) and it was firmly and correctly rebutted. (2) Even then, it is not the "shortest possible" but the shortest legally or, maybe safely possible. Or the shortest possible in compliance with the regs. But it is not the "shortest possible", without some qualification. Paul Beardsell (talk) 09:07, 2 October 2009 (UTC)Reply
How about this for the 2nd sentence: "When a balanced field takeoff is performed this results in the shortest possible runway length satisfying safety regulations for the given conditions." No! even that doesn't work. We have established (and the cited references confirm) that sometimes/often a pilot selects reduced power and with the reduced power still performs a balanced field takeoff. So "shortest possible" is still not correct. This can perhaps be phrased more elegantly but the 2nd sentence would have to be: "When a full thrust balanced field takeoff is performed this results in the shortest possible runway length satisfying safety regulations for the given conditions." Paul Beardsell (talk) 09:07, 2 October 2009 (UTC)Reply
We are definitely making progress.
Where this source (and many others) says "results in the shortest possible runway length for the given conditions" I am sure it is referring to the choice of V1. For example:
  • Let's say V1 for BFL is 120 knots; and ASDR & TODR (OEI) are balanced at 2000 meters.
  • Now let's consider V1 of 110 knots. ASDR might be 1800 meters, and TODR (OEI) might be 2200 meters. A runway length of 2200 meters is required. (1800 meters complies with the ASD requirement, but it is inadequate because it does not comply with TOD (OEI) requirement.)
  • Thirdly, let's consider V1 of 130 knots. ASDR might be 2200 meters, and TODR (OEI) might be 1800 meters. Again, a runway length of 2200 meters is required.
  • The shortest runway length permissible for takeoff at the weight and thrust under consideration is 2000 meters. This runway length is adequate if, and only if, the choice of V1 is 120 knots. If V1 is any faster or any slower a greater runway length is required.
The above cases are depicted in this diagram.
Your first proposal for the second sentence is actually very close to the mark. What do you think of:
"For a given aircraft weight and engine thrust the shortest runway length that complies with safety regulations is the balanced field length"? Dolphin51 (talk) 12:32, 2 October 2009 (UTC)Reply
Well, that pleases me best in that it seems to create no false impressions, but is simple enough to be comprehensible. Simplicity and truth: Who could ask for more? So until we discover the next significant wrinkle :-) let's go with that. Paul Beardsell (talk) 16:03, 2 October 2009 (UTC)Reply

Great. I suggest we replace the first paragraph with the following:
A balanced field takeoff is a condition where the accelerate-stop distance required (ASDR) is equal to the takeoff distance required (TODR) for the aircraft weight, engine thrust, aircraft configuration and runway condition.[1] For a given aircraft weight, engine thrust, aircraft configuration and runway condition the shortest runway length that complies with safety regulations is the balanced field length. [2] [3]

Notes

  1. ^ [Field Takeoff (Balanced) [http://selair.selkirk.bc.ca/training/systems/power-point/AVIA%20240/04V-speeds.ppt#265,18,Balanced Field Takeoff (Balanced)]], retrieved 2009-10-01 {{citation}}: Check |url= value (help); Missing or empty |title= (help)
  2. ^ Balanced field length, retrieved 2009-09-22
  3. ^ Balanced field length, retrieved 2009-09-22

On what occasions is a BFT performed? edit

Assume for the moment BFT definition says "stop-distance required" (which of course would have to be no less than the distance available).

The pilot of a 737 on a 10km sea level runway at STP decides to do a full thrust BFT and reads the one correct V-1 out of the tables for this. V-1 will be less than V-R. At a speed greater than V-1 but just below V-R one engine fails catastrophically. Does the pilot abort or continue? He should continue say both the regs and the airline's ops manual - above V-1 you must continue - that's the point of nominating V-1: You don't have time to think it through should something go wrong. Nevertheless the quick-thinking and life-preserving pilot will know he has lots of space and will abort (and quickly adjust his nominated V-1 after the fact!) Thus the pilot would be better to select V-1 to be V-R on a long runway. And *therefore* takeoff is not a BFT as the distance to continue to V-2 is less than the distance to stop should an engine fail at V-1 = V-R. So the pilot should not do a BFT on a long runway because it's always safer to abort if the stop length still available exceeds the stop length still required and the a/c is not yet airborne. [And especially so in the case of an engine fire!] Correct? Paul Beardsell (talk) 12:19, 24 September 2009 (UTC)Reply

I agree that on a very long runway the best choice is V1 equal to VR. As the result, this is not a BFT because accelerate-stop distance required exceeds OEI takeoff distance required, but that is no problem because there is excess distance available.

Or: Given that the chance of engine failure is small; and that the pilot is prepared to do a screeching tyre-shredding emergency stop before V-1; and that engine failure is even less likely at reduced levels of thrust: the pilot could elect to use a reduced level of thrust so that a BFT is possible on the long runwaythe BFLength equals the runway length. And this is what is done. (Although I do read that regulation requires that the reduced level of thrust is not permitted to be below 75% of full thrust; and it obviously silly to use a take-off power level less than economical climb thrust even on the world's flattest longest runway.) Correct? Paul Beardsell (talk) 12:34, 24 September 2009 (UTC)Reply

I agree generally, but I challenge the expression "so that a BFT is possible". A BFT is possible even without reduced thrust. Having taken the decision to use reduced thrust the Captain needs to determine a suitable takeoff thrust setting and he could do that by saying what is the thrust level at which the BFT equals the runway length available. I suggest the offending sentence says "the pilot could elect to use a reduced level of thrust, and could set thrust at the level that ensures the Balanced Field Length is equal to the runway length available."
Yes, sorry. I have now fixed the offending comment above. Paul Beardsell (talk) 14:06, 24 September 2009 (UTC)Reply
A very common application of BFT is as follows. An airline has comprehensive takeoff charts tailored to all its major ports. There is one or more tables dedicated to each runway. But the pilots sometimes find themselves at an airport outside the company network. This might be due to on-demand operations, diversions due weather, emergency landings etc. In that situation they have to sit on the ground for hours waiting for the Performance Department to confirm they have enough runway to depart, and to advise a suitable V1. The pilots ask for a simple, generic takeoff chart that can be used at every runway. The Performance Department produces a simple, generic chart. It shows a range of weights, altitudes, and temperatures with VR and V2 for each combination. It also shows a V1 and a runway length for each combination. The runway length is the BFLength for each combination, and the V1 is the speed that causes ASDR and OEI TODR to be equal. The ASDR and the OEI TODR are, of course, the BFLength. (I realize I am writing about BFLength, and this article is about BFTakeoff. We are still exploring a suitable definition for BFTakeoff, but it will end up being closely related to BFLength somehow.) Dolphin51 (talk) 13:38, 24 September 2009 (UTC)Reply
That's very helpful, thanks. I suppose in the example I use to head this section the pilot (as advised by the tables devised by his employer's Performance Department) will select V1=VR, and a reduced thrust level to make a V1=VR takeoff into a BFT? Paul Beardsell (talk) 09:54, 2 October 2009 (UTC)Reply
A more likely situation would go like this. The pilot needs to depart at a weight of 60,000 kg. The generic tables indicate VR should be 130 knots. The tables also indicate 2000 m of runway are required, and V1 should be 110 knots. However, the runway length available is 2500 m. The pilot notices that, at full thrust, 2500 m is the required runway length at a weight of 70,000 kg and V1 of 135 knots. If the runway is adequate for a takeoff at 70,000 kg with V1 of 135 knots, clearly it is also adequate at a weight of 60,000 kg with a V1 of 135 knots. So the pilot can set full thrust, and V1 equal to VR equal to 130 knots - however, the two distances would no longer be balanced because at the higher V1 ASDR would be longer than TOD OEI.
The pilot examines the generic tables and notices that at a weight of 60,000 kg, runway length of 2500 m is adequate at all temperatures up to 50 degrees Celsius. It is a pleasant evening with a temperature of 20 degrees Celsius and he decides he will carry out a reduced-thrust takeoff. He sets takeoff thrust appropriate to 50 degrees Celsius. VR of 130 knots remains appropriate because VR and V2 are related to stalling speed and are unaffected by engine thrust. In the absence of further information, V1 would have to be 110 knots because the generic tables do not guarantee that the accelerate-stop maneuver can be carried out within 2500 m from a V1 faster than 110 knots, given the reduced takeoff thrust. At 110 knots the two distances remain balanced.
Alternatively, the generic tables might show the variation of V1 with ambient temperature. At a weight of 60,000 kg, the tables might show that for 20 degrees Celsius V1 is 110 knots; and for 50 degrees Celsius, V1 might be 115 knots. (At a higher temperature I would expect a higher V1. Reduced thrust due to higher temperature affects the entire OEI TOD maneuver, but it affects the accelerate-stop maneuver only up to V1. Published braking performance is not affected by ambient temperature because ASDR contains no credit for reverse thrust.)
If the generic tables show the variation of V1 with ambient temperature, and at 60,000 kg and 50 degrees Celsius, V1 is 130 knots or faster, then with reduced-thrust V1 can be equal to VR of 130 knots. Dolphin51 (talk) 09:50, 3 October 2009 (UTC)Reply
If the runway length is 10,000 m when only 2,000 m are required at 20 degrees Celsius it would seem obvious that V1 could be equal to VR regardless of the ambient temperature, and regardless of the amount of thrust reduction. However, it is unlikely to be a Balanced Field Takeoff. (When V1 equals VR the TODR OEI usually exceeds the ASDR and we say the takeoff is takeoff distance limited. When a takeoff is balanced field length limited V1 is somewhere between Vmcg and VR. When V1 is equal to Vmcg the ASDR usually exceeds TODR OEI and we say the takeoff is accelerate-stop distance limited.) Dolphin51 (talk) 06:36, 4 October 2009 (UTC)Reply

Short field takeoff Soft field takeoff edit

I put a link to Short field takeoff Soft field takeoff in the see also, but there is no article (yet) for it. If you are knowledgeable on the subject, could you help start and write this article? Here is a video [11] of such a takeoff, to get you started. I would do it myself, but I don't know enough about it, and judging by the other comments on this talk page, you guys are experts. Ariel. (talk) 23:07, 7 January 2010 (UTC)Reply

No, Ariel added a red link to Soft field takeoff, not short field takeoff. See diff. There already exists an article titled Vertical/Short Takeoff and Landing.
WP:LAYOUT#See also section says please refrain from adding links to pages that do not yet exist (red links).
If a User wants to request creation of a new Wikipedia article, the User should post a request at WP:REQUEST. Alternatively, the User can weave the name of the desired article into an existing article, and show the desired article as a red link.
The full debate is available here. Dolphin51 (talk) 01:06, 8 January 2010 (UTC)Reply
Sorry, I did mean Soft, not short. I changed what I wrote. PS. Don't be quite so strict on wikipedia rules, wikipedia is already loosing editors, don't make it harder than it needs to be. Ariel. (talk) 04:43, 8 January 2010 (UTC)Reply
If you feel the request to all Users to refrain from adding red links to See also might be unwise, the appropriate course of action is to make a submission to this effect at Wikipedia talk:Layout. Simply adding a red link in breach of Wikipedia's guidelines is not clever and it is unlikely to enhance the quality of Wikipedia. Dolphin51 (talk) 10:19, 8 January 2010 (UTC)Reply
"The full debate is available"? Adding a proof diff link? Changing my section header? Is it really so important to know that once upon a time I made a typo? How does any of that help in acquiring a new article? Thanks for reminding me why I stopped contributing to articles. I'll be sure not to come back. A quote that might help you: "The perfect is the enemy of the good." Ariel. (talk) 12:06, 8 January 2010 (UTC)Reply
Wikipedia does not expect perfect. In Wikipedia, good is entirely adequate. Your contribution to this article has been to add a red link under See also. That would not be a problem except that on at least two occasions I politely alerted you to a Wikipedia request that Users don't add red links under See also. All that is expected of you is to remove your red link from the See also section, but you have continued to defend your action. (You might remember that I removed it, and wrote to you at your Talk page to explain. However, you reverted my removal of the red link.) So your contribution so far to this article could not be described as good. Perhaps it could be described as wilful.
We all make mistakes. The clever ones don't take it personally, but learn from the experience and go on to bigger things. I hope that is what you will do. Regards. Dolphin51 (talk) 07:12, 10 January 2010 (UTC)Reply

External links modified edit

Hello fellow Wikipedians,

I have just modified one external link on Balanced field takeoff. Please take a moment to review my edit. If you have any questions, or need the bot to ignore the links, or the page altogether, please visit this simple FaQ for additional information. I made the following changes:

When you have finished reviewing my changes, please set the checked parameter below to true or failed to let others know (documentation at {{Sourcecheck}}).

This message was posted before February 2018. After February 2018, "External links modified" talk page sections are no longer generated or monitored by InternetArchiveBot. No special action is required regarding these talk page notices, other than regular verification using the archive tool instructions below. Editors have permission to delete these "External links modified" talk page sections if they want to de-clutter talk pages, but see the RfC before doing mass systematic removals. This message is updated dynamically through the template {{source check}} (last update: 18 January 2022).

  • If you have discovered URLs which were erroneously considered dead by the bot, you can report them with this tool.
  • If you found an error with any archives or the URLs themselves, you can fix them with this tool.

Cheers.—InternetArchiveBot (Report bug) 13:14, 24 October 2016 (UTC)Reply

Regulatory background edit

Cagliost On 11 October 2022 you inserted a new paragraph in the section titled “Regulatory background”. You haven’t provided an in-line citation so your insertion is presently unsourced.

It appears to me that your new paragraph is your attempt to explain the V1 Range of speeds in simple language for pilots rather than in language appropriate to an encyclopaedia. Whether a newcomer to the subject will find it helpful is debatable. None of it looks directly relevant to the regulatory background.

I will add the “citation needed” tag to the paragraph but it really needs a lot of polish and refinement if it is to remain in the article. Dolphin (t) 09:09, 12 October 2022 (UTC)Reply