Systems science

Systems science, also referred to as systems research,[1] or, simply, systems,[2] is an interdisciplinary field concerned with understanding systems—from simple to complex—in nature, society, cognition, engineering, technology and science itself. The field is diverse, spanning the formal, natural, social, and applied sciences.

Impression of systems thinking about society

To systems scientists, the world can be understood as a system of systems.[3] The field aims to develop interdisciplinary foundations that are applicable in a variety of areas, such as psychology, biology, medicine, communication, business management, technology, computer science, engineering, and social sciences.[4]

Systems science covers formal sciences such as complex systems, cybernetics, dynamical systems theory, information theory, linguistics or systems theory. It has applications in the field of the natural and social sciences and engineering, such as control theory, systems design, operations research, social systems theory, systems biology, system dynamics, human factors, systems ecology, computer science, systems engineering and systems psychology.[5] Themes commonly stressed in system science are (a) holistic view, (b) interaction between a system and its embedding environment, and (c) complex (often subtle) trajectories of dynamic behavior that sometimes are stable (and thus reinforcing), while at various 'boundary conditions' can become wildly unstable (and thus destructive). Concerns about Earth-scale biosphere/geosphere dynamics is an example of the nature of problems to which systems science seeks to contribute meaningful insights.

Associated fieldsEdit

 
Systems notes of Henk Bikker, TU Delft, 1991

The systems sciences are a broad array of fields. One way of conceiving of these is in three groups: fields that have developed systems ideas primarily through theory; those that have done so primarily through practical engagements with problem situations; and those that have applied systems ideas in the context of other disciplines.[6]

Theoretical fieldsEdit

Chaos and dynamical systemsEdit

ComplexityEdit

Control theoryEdit

CyberneticsEdit

Information theoryEdit

General systems theoryEdit

Hierarchy TheoryEdit

Practical fieldsEdit

Critical systems thinkingEdit

Operations research and management scienceEdit

Soft systems methodologyEdit

The soft systems methodology was developed in England by academics at the University of Lancaster Systems Department through a ten-year action research programme. The main contributor is Peter Checkland (born 18 December 1930, in Birmingham, UK), a British management scientist and emeritus professor of systems at Lancaster University.

Systems analysisEdit

Systems analysis branch of systems science that analyzes systems, the interactions within those systems, or interaction with its environment,[7] often prior to their automation as computer models. Systems analysis is closely associated with the RAND corporation.

Systemic designEdit

Systemic design integrates methodologies from systems thinking with advanced design practices to address complex, multi-stakeholder situations.

Systems dynamicsEdit

System dynamics is an approach to understanding the behavior of complex systems over time. It offers "simulation technique for modeling business and social systems",[8] which deals with internal feedback loops and time delays that affect the behavior of the entire system. What makes using system dynamics different from other approaches to studying complex systems is the use of feedback loops and stocks and flows.

Systems engineeringEdit

Systems engineering (SE) is an interdisciplinary field of engineering, that focuses on the development and organization of complex systems. It is the "art and science of creating whole solutions to complex problems",[9] for example: signal processing systems, control systems and communication system, or other forms of high-level modelling and design in specific fields of engineering.

Applications in other disciplinesEdit

Earth system scienceEdit

Systems biologyEdit

Systems chemistryEdit

Systems ecologyEdit

Systems psychologyEdit

Systems scientistsEdit

General systems scientists can be divided into different generations. The founders of the systems movement like Ludwig von Bertalanffy, Kenneth Boulding, Ralph Gerard, James Grier Miller, George J. Klir, and Anatol Rapoport were all born between 1900 and 1920. They came from different natural and social science disciplines and joined forces in the 1950s to establish the general systems theory paradigm. Along with the organization of their efforts a first generation of systems scientists rose.

Among them were other scientists like Ackoff, Ashby, Margaret Mead and Churchman, who popularized the systems concept in the 1950s and 1960s. These scientists inspired and educated a second generation with more notable scientists like Ervin Laszlo (1932) and Fritjof Capra (1939), who wrote about systems theory in the 1970s and 1980s. Others got acquainted and started studying these works in the 1980s and started writing about it since the 1990s. Debora Hammond can be seen as a typical representative of these third generation of general systems scientists.

OrganizationsEdit

The International Society for the Systems Sciences (ISSS) is an organisation for interdisciplinary collaboration and synthesis of systems sciences. The ISSS is unique among systems-oriented institutions in terms of the breadth of its scope, bringing together scholars and practitioners from academic, business, government, and non-profit organizations. Based on fifty years of tremendous interdisciplinary research from the scientific study of complex systems to interactive approaches in management and community development. This society was initially conceived in 1954 at the Stanford Center for Advanced Study in the Behavioral Sciences by Ludwig von Bertalanffy, Kenneth Boulding, Ralph Gerard, and Anatol Rapoport.

In the field of systems science the International Federation for Systems Research (IFSR) is an international federation for global and local societies in the field of systems science. This federation is a non-profit, scientific and educational agency founded in 1981, and constituted of some thirty member organizations from various countries. The overall purpose of this Federation is to advance cybernetic and systems research and systems applications and to serve the international systems community.

The best known research institute in the field is the Santa Fe Institute (SFI) located in Santa Fe, New Mexico, United States, dedicated to the study of complex systems. This institute was founded in 1984 by George Cowan, David Pines, Stirling Colgate, Murray Gell-Mann, Nick Metropolis, Herb Anderson, Peter A. Carruthers, and Richard Slansky. All but Pines and Gell-Mann were scientists with Los Alamos National Laboratory. SFI's original mission was to disseminate the notion of a separate interdisciplinary research area, complexity theory referred to at SFI as complexity science. Recently, IIT Jodhpur in Rajasthan, India started inculcating system science and engineering to its students through Bachelors, Masters and Doctorate programs. This makes it the first institution to offer system science education to students in India.

See alsoEdit

ReferencesEdit

  1. ^ "IFSR".
  2. ^ Ison, Ray. Systems Practice: How to Act: In situations of uncertainty and complexity in a climate-change world, 2nd ed, 2017. Springer, p. 33
  3. ^ G. E. Mobus & M. C. Kalton, Principles of Systems Science, 2015, New York:Springer.
  4. ^ Philip M'Pherson (1974, p. 229); as cited by: Hieronymi, A. (2013), Understanding Systems Science: A Visual and Integrative Approach. Syst. Res.. doi:10.1002/sres.2215. He defined systems science as "the ordered arrangement of knowledge acquired from the study of systems in the observable world, together with the application of this knowledge to the design of man-made systems".
  5. ^ According to Francis Heylighen in "What are Cybernetics and Systems Science?" on Principia Cybernetica Web (1999) systems science is an "academic domain, that touches virtually all traditional disciplines, from mathematics, technology and biology to philosophy and the social sciences".
  6. ^ Peter Checkland. 1981. Systems Thinking, Systems Practice. Chichester: Wiley.
  7. ^ Anthony Debons. "Command and Control: Technology and Social Impact" in: Advances in computers, Vol. 11. Franz L. Alt & Morris Rubinoff eds. (1971). p. 362
  8. ^ Center for Complex Adaptive Agent Systems Simulation Argonne National Laboratory (2007) Managing Business Complexity : Discovering Strategic Solutions with Agent-Based Modeling and Simulation: Discovering Strategic Solutions with Agent-Based Modeling and Simulation. Oxford University Press. p. 55
  9. ^ Derek K. Hitchins (2008) Systems Engineering: A 21st Century Systems Methodology. p. 100

Further readingEdit

External linksEdit