Open main menu

Smart environments link computers and other smart devices to everyday settings and tasks. Smart environments include smart homes, smart cities and smart manufacturing.


Smart environments are an extension of pervasive computing. According to Mark Weiser, pervasive computing promotes the idea of a world that is connected to sensors and computers.[1] These sensors and computers are integrated with everyday objects in peoples' lives and are connected through networks.[1]


Cook and Das[2] define smart environment as "a small world where different kinds of smart device are continuously working to make inhabitants' lives more comfortable." Smart environments aim to satisfy the experience of individuals from every environment, by replacing the hazardous work, physical labor, and repetitive tasks with automated agents. Poslad[3] differentiates three different kinds of smart environments for systems, services and devices: virtual (or distributed) computing environments, physical environments and human environments, or a hybrid combination of these:

  • Virtual computing environments enable smart devices to access pertinent services anywhere and anytime.
  • Physical environments may be embedded with a variety of smart devices of different types including tags, sensors and controllers and have different form factors ranging from nano- to micro- to macro-sized.
  • Human environments: humans, either individually or collectively, inherently form a smart environment for devices. However, humans may themselves be accompanied by smart devices such as mobile phones, use surface-mounted devices (wearable computing) and contain embedded devices (e.g., pacemakers to maintain a healthy heart operation or AR contact lenses).


Smart environments are broadly classified to have the following features

  1. Remote control of devices, like power line communication systems to control devices.
  2. Device Communication, using middleware, and Wireless communication to form a picture of connected environments.
  3. Information Acquisition/Dissemination from sensor networks
  4. Enhanced Services by Intelligent Devices
  5. Predictive and Decision-Making capabilities


To build a smart environment, involves technologies of

  1. Wireless communication
  2. Algorithm design, signal prediction & classification, information theory
  3. Multilayered software architecture, Corba, middleware
  4. Speech recognition
  5. Image processing, image recognition
  6. Sensors design, calibration, motion detection, temperature, pressure sensors, accelerometers
  7. Semantic Web and knowledge graphs
  8. Adaptive control, Kalman filters
  9. Computer networking
  10. Parallel processing
  11. Operating systems

Existing projectsEdit

The Aware Home Research Initiative at Georgia Tech "is devoted to the multidisciplinary exploration of emerging technologies and services based in the home" and was launched in 1998 as one of the first "living laboratories."[4] The MavHome (Managing an Adaptive Versatile Home) project, at UT Arlington, is a smart environment-lab with state-of-the-art algorithms and protocols used to provide a customized, personal environment to the users of this space. The MavHome project, in addition to providing a safe environment, wants to reduce the energy consumption of the inhabitants.[5] Other projects include House_n at the MIT Media Lab and many others.

See alsoEdit


  1. ^ a b "The origins of ubiquitous computing research at PARC in the late 1980s" (PDF). 1999.
  2. ^ Cook, Diane; Das, Sajal (2005). Smart Environments: Technology, Protocols and Applications. Wiley-Interscience. ISBN 0-471-54448-5.
  3. ^ Poslad, Stefan (2009). Ubiquitous Computing Smart Devices, Smart Environments and Smart Interaction. Wiley. ISBN 978-0-470-03560-3.
  4. ^ "Aware Home About US". 2007. Archived from the original on 2008-03-15.
  5. ^ "MavHome". 2004. Archived from the original on 2005-09-13.