third and current period of the Cenozoic Era
For other uses, see Quaternary (disambiguation).
Quaternary Period
2.58–0 million years ago
Mean atmospheric O
content over period duration
c. 20.8 vol %[1][2]
(104 % of modern level)
Mean atmospheric CO
content over period duration
c. 250 ppm[3][4]
(1 times pre-industrial level)
Mean surface temperature over period duration c. 14 °C[5][6]
(0 °C above modern level)

Quaternary (pronunciation: /kwəˈtɜːrnəri/) is the current and most recent of the three periods of the Cenozoic Era in the geologic time scale of the International Commission on Stratigraphy (ICS).[7] It follows the Neogene Period and spans from 2.588 ± 0.005 million years ago to the present.[7] The Quaternary Period is divided into two epochs: the Pleistocene (2.588 million years ago to 11.7 thousand years ago) and the Holocene (11.7 thousand years ago to today).[7] The informal term "Late Quaternary" refers to the past 0.5–1.0 million years.[8]

The Quaternary Period is typically defined by the cyclic growth and decay of continental ice sheets driven by Milankovitch cycles and the associated climate and environmental changes that occurred.[9][10]


Research historyEdit

The term Quaternary ("fourth") was proposed by Giovanni Arduino in 1759 for alluvial deposits in the Po River valley in northern Italy. It was introduced by Jules Desnoyers in 1829 for sediments of France's Seine Basin that seemed clearly to be younger than Tertiary Period rocks.[11][12][citation needed]

The Quaternary Period follows the Neogene Period and extends to the present. The Quaternary covers the time span of glaciations classified as the Pleistocene, and includes the present interglacial time-period, the Holocene.

This places the start of the Quaternary at the onset of Northern Hemisphere glaciation approximately 2.6 million years ago. Prior to 2009, the Pleistocene was defined to be from 1.805 million years ago to the present, so the current definition of the Pleistocene includes a portion of what was, prior to 2009, defined as the Pliocene.

Subdivisions of the Quaternary System
Age (Ma)
Quaternary Holocene 0.0117–0
Pleistocene Tarantian 0.126–0.0117
Ionian 0.781–0.126
Calabrian 1.80–0.781
Gelasian 2.58–1.80
Neogene Pliocene Piacenzian older
In Europe and North America, the Holocene is subdivided into Preboreal, Boreal, Atlantic, Subboreal, and Subatlantic stages of the Blytt–Sernander time scale. There are many regional subdivisions for the Upper or Late Pleistocene; usually these represent locally recognized cold (glacial) and warm (interglacial) periods. The last glacial period ends with the cold Younger Dryas substage.

Quaternary stratigraphers usually worked with regional subdivisions. From the 1970s, the International Commission on Stratigraphy (ICS) tried to make a single geologic time scale based on GSSP's, which could be used internationally. The Quaternary subdivisions were defined based on biostratigraphy instead of paleoclimate.

This led to the problem that the proposed base of the Pleistocene was at 1.805 Mya, long after the start of the major glaciations of the northern hemisphere. The ICS then proposed to abolish use of the name Quaternary altogether, which appeared unacceptable to the International Union for Quaternary Research (INQUA).

In 2009, it was decided to make the Quaternary the youngest period of the Cenozoic Era with its base at 2.588 Mya and including the Gelasian stage, which was formerly considered part of the Neogene Period and Pliocene Epoch.[13]

The Anthropocene has been proposed as a third epoch as a mark of the anthropogenic impact on the global environment starting with the Industrial Revolution, or about 200 years ago.[14] The Anthropocene is not officially designated by the ICS, however, but a working group is currently aiming to complete a proposal for the creation of an epoch or sub-period by 2016.[15]


Further information: Quaternary geology

The 2.6 million years of the Quaternary represents the time during which recognizable humans existed. Over this short time period, there has been relatively little change in the distribution of the continents due to plate tectonics.

The Quaternary geological record is preserved in greater detail than that for earlier periods.

The major geographical changes during this time period included the emergence of the Strait of Bosphorus and Skagerrak during glacial epochs, which respectively turned the Black Sea and Baltic Sea into fresh water, followed by their flooding (and return to salt water) by rising sea level; the periodic filling of the English Channel, forming a land bridge between Britain and the European mainland; the periodic closing of the Bering Strait, forming the land bridge between Asia and North America; and the periodic flash flooding of Scablands of the American Northwest by glacial water.

The current extent of Hudson Bay, the Great Lakes and other major lakes of North America are a consequence of the Canadian Shield's readjustment since the last ice age; different shorelines have existed over the course of Quaternary time.


The climate was one of periodic glaciations with continental glaciers moving as far from the poles as 40 degrees latitude. There was a major extinction of large mammals in Northern areas at the end of the Pleistocene Epoch. Many forms such as saber-toothed cats, mammoths, mastodons, glyptodonts, etc., became extinct worldwide. Others, including horses, camels and American cheetahs became extinct in North America.[16][17]

Quaternary glaciationEdit

Main article: Quaternary glaciation

Glaciation took place repeatedly during the Quaternary Ice Age – a term coined by Schimper in 1839 that began with the start of the Quaternary about 2.58 Mya and continues to the present-day.

Last glacial periodEdit

Artist's impression of Earth during the Last Glacial Maximum
Main article: Last glacial period

In 1821, a Swiss engineer, Ignaz Venetz, presented an article in which he suggested the presence of traces of the passage of a glacier at a considerable distance from the Alps. This idea was initially disputed by another Swiss scientist, Louis Agassiz, but when he undertook to disprove it, he ended up affirming his colleague's hypothesis. A year later, Agassiz raised the hypothesis of a great glacial period that would have had long-reaching general effects. This idea gained him international fame and led to the establishment of the Glacial Theory.

In time, thanks to the refinement of geology, it has been demonstrated that there were several periods of glacial advance and retreat and that past temperatures on Earth were very different from today. In particular, the Milankovitch cycles of Milutin Milankovitch are based on the premise that variations in incoming solar radiation are a fundamental factor controlling Earth's climate.

During this time, substantial glaciers advanced and retreated over much of North America and Europe, parts of South America and Asia, and all of Antarctica. The Great Lakes formed and giant mammals thrived in parts of North America and Eurasia not covered in ice. These mammals became extinct when the glacial period Age ended about 11,700 years ago. Modern humans evolved about 190,000 years ago (source: Leakey). During the Quaternary Period, mammals, flowering plants, and insects dominated the land.[citation needed]

Journals relating to the Quaternary PeriodEdit

See alsoEdit


  1. ^ Image:Sauerstoffgehalt-1000mj.svg
  2. ^ Image:OxygenLevelsThroughEarthHistory.png
  3. ^ Image:Phanerozoic Carbon Dioxide.png
  4. ^ Image:CO2LevelsThroughEarthHistory.png
  5. ^ Image:All palaeotemps.png
  6. ^ Image:TemperatureLevelsOverEarthHistory.png
  7. ^ a b c Cohen, K.M.; Finney, S.C.; Gibbard, P.L.; Fan, J.-X. "International Chronostratigraphic Chart 2013" (PDF). http://www.stratigraphy.org/icschart/chronostratchart2013-01.pdf. ICS. Retrieved 15 June 2014.  External link in |website= (help)
  8. ^ Earthquake Glossary - Late Quaternary U.S. Geological Survey
  9. ^ Denton, G.H.; Anderson, R.F.; Toggweiler, J.R.; Edwards, R.L.; Schaefer, J.M.; Putnam, A.E. (2010). "The Last Glacial Termination". Science. 328: 1652–1656. doi:10.1126/science.1184119. 
  10. ^ Lowe, J.J.; Walker, M.J.C. (1997). Reconstructing Quaternary Environments. Routledge. ISBN 0582101662. 
  11. ^ "Late Quaternary Fluvial and Coastal Sequences Chapter 1: Introduction" (PDF). Retrieved March 26, 2017. 
  12. ^ Wiz Science™ (2015-09-28), Quaternary - Video Learning - WizScience.com, retrieved 2017-03-26 
  13. ^ See the 2009 version of the ICS geologic time scale
  14. ^ Zalasiewicz, J.; Williams, M.; Haywood, A.; Ellis, M. (2011). "The Anthropocene: a new epoch of geological time?". Philosophical Transactions of the Royal Society A. 369 (1938): 835–841. doi:10.1098/rsta.2010.0339. PMID 21282149. 
  15. ^ "Working Group on the 'Anthropocene'". Subcomission on Quaternary Stratigraphy. Retrieved 16 June 2014. 
  16. ^ Haynes. "Stanford Camelops" (PDF). 
  17. ^ "Extinct American Cheetah Fact Sheet". library.sandiegozoo.org. Retrieved 2015-12-10. 

External linksEdit

Pleistocene Holocene
Early | Middle | Late Preboreal | Boreal |
Atlantic | Subboreal | Subatlantic
Preceded by Proterozoic Eon Phanerozoic Eon
Paleozoic Era Mesozoic Era Cenozoic Era
Cambrian Ordovician Silurian Devonian Carboniferous Permian Triassic Jurassic Cretaceous Paleogene Neogene 4ry