# Null vector

In mathematics, given a vector space X with an associated quadratic form q, written (X, q), a null vector or isotropic vector is a non-zero element x of X for which q(x) = 0. A null cone where $q(x,y,z)=x^{2}+y^{2}-z^{2}.$ In the theory of real bilinear forms, definite quadratic forms and isotropic quadratic forms are distinct. They are distinguished in that only for the latter does there exist a nonzero null vector.

A quadratic space (X, q) which has a null vector is called a pseudo-Euclidean space.

A pseudo-Euclidean vector space may be decomposed (non-uniquely) into orthogonal subspaces A and B, X = A + B, where q is positive-definite on A and negative-definite on B. The null cone, or isotropic cone, of X consists of the union of balanced spheres:

$\bigcup _{r\geq 0}\{x=a+b:q(a)=-q(b)=r,a\in A,b\in B\}.$ The null cone is also the union of the isotropic lines through the origin.

## Examples

The light-like vectors of Minkowski space are null vectors.

The four linearly independent biquaternions l = 1 + hi, n = 1 + hj, m = 1 + hk, and m = 1 – hk are null vectors and { l, n, m, m } can serve as a basis for the subspace used to represent spacetime. Null vectors are also used in the Newman–Penrose formalism approach to spacetime manifolds.

A composition algebra splits when it has a null vector; otherwise it is a division algebra.

In the Verma module of a Lie algebra there are null vectors.