In geology, a graben (/ˈɡrɑːbən/) is a depressed block of the crust of a planet or moon, bordered by parallel normal faults.
Etymology
editGraben is a loan word from German, meaning 'ditch' or 'trench'. The first known usage of the word in the geologic context was by Eduard Suess in 1883.[1] The plural form is either graben[2] or grabens.[3]
Formation
editA graben is a valley with a distinct escarpment on each side caused by the displacement of a block of land downward. Graben often occur side by side with horsts. Horst and graben structures indicate tensional forces and crustal stretching.
Graben are produced from parallel normal faults, where the displacement of the hanging wall is downward, while that of the footwall is upward. The faults typically dip toward the center of the graben from both sides. Horsts are parallel blocks that remain between graben; the bounding faults of a horst typically dip away from the center line of the horst. Single or multiple graben can produce a rift valley.
Half-graben
editIn many rifts, the graben are asymmetric, with a major fault along only one of the boundaries, and these are known as half-graben. The polarity (throw direction) of the main bounding faults typically alternates along the length of the rift. The asymmetry of a half-graben strongly affects syntectonic deposition. Comparatively little sediment enters the half-graben across the main bounding fault because of footwall uplift on the drainage systems. The exception is at any major offset in the bounding fault, where a relay ramp may provide an important sediment input point. Most of the sediment will enter the half-graben down the unfaulted hanging wall side (e.g., Lake Baikal).[4]
Examples
editAfrica
edit- East African Rift Valley
- Lucapa Graben, Lunda Norte Province, Angola
Antarctica
editAsia
edit- Narmada River Valley, central India
- lower Godavari River Valley, southern India
- Baikal Rift Zone, Siberia, Russia
- Moma Graben, Sakha Republic, Russia
- Büyük Menderes Graben, Turkey
- Fossa Magna, Honshu, Japan
- Ariake Sea as part of the Unzen graben, Kyushu, Japan
- Beppu–Shimabara graben, Kyushu, Japan
Europe
edit- Rhine valley, border area of west Germany and northeast France
- Oslo graben around Oslo, Norway
- Central Lowlands, Scotland
- Worcester Basin, England
- Central Graben, North Sea
- Viking Graben, North Sea
- Vättern, Sweden
- Lowtherville Graben, Ventnor, Isle of Wight, England[5][6]
North America
editCanada
edit- Ottawa-Bonnechere Graben, Ontario and Quebec, Canada
- Saguenay Graben, Quebec, Canada
Guatemala
edit- Guatemala City valley, Guatemala
United States
edit- Basin and Range Province of southwestern North America is an example of multiple horst/graben structures, including Death Valley, with Salt Lake Valley being the easternmost and Owens Valley being the westernmost.
- Lake George Basin, New York, U.S.
- Lake Tahoe Basin, California and Nevada, U.S.
- Republic Graben, Republic, Washington, U.S.
- Rio Grande Rift Valley in Colorado/New Mexico/Texas of the United States
- Rough Creek Graben, Kentucky, U.S.
- Santa Clara Valley, California, U.S.
- Western Snake River Plain, Idaho, U.S.
- Southwest San Bernardino Valley (Arizona), U.S.
Multi-national
edit- Eastern North America Rift Basins, Canada and the U.S.
- Midcontinent Rift System, Canada and the U.S.
- Salton Trough, Mexico and the U.S.
Oceania
edit- Firth of Thames of Hauraki Gulf and Hauraki Plains of Hauraki Rift (Hauraki half grabens), North Island, New Zealand[7]
- Tikitere Graben within the Taupo Rift, North Island, New Zealand.[8]
- Gulf St Vincent, South Australia, Australia[9]
- Tamar Valley, Tasmania, Australia[10]
South America
editSee also
edit- European Cenozoic Rift System
- Fossa (geology) – Long, narrow, shallow depression
Notes
edit- ^ "graben". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
- ^ Schlumberger Oilfield Glossary
- ^ horst and graben. Encyclopædia Britannica. Retrieved 15 November 2012.
- ^ Hans Nelson, C.; Karabanov, Evgeny B.; Colman, Steven M.; Escutia, Carlota (1999). "Tectonic and sediment supply control of deep rift lake turbidite systems: Lake Baikal, Russia". Geology. 27 (2): 163–166. Bibcode:1999Geo....27..163N. doi:10.1130/0091-7613(1999)027<0163:TASSCO>2.3.CO;2.
- ^ CAREY, JONATHAN (2011). The Progressive Development and Post-failure Behaviour of Deep-seated Landslide Complexes (Doctoral thesis). Durham University.
- ^ Carey, Jonathan (November 2014). "Patterns of movement in the Ventnor landslide complex, Isle of Wight, southern England". Landslides. 12 (6): 1107. Bibcode:2015Lands..12.1107C. doi:10.1007/s10346-014-0538-1.
- ^ Hochstein, M.P.; Nixon, I.M. (1979). "Geophysical study of the Hauraki Depression, North Island, New Zealand". New Zealand Journal of Geology and Geophysics. 22 (1): 1–19. Bibcode:1979NZJGG..22....1H. doi:10.1080/00288306.1979.10422550.
- ^ Manville, V.; Hodgson, K. A.; Nairn, I. A. (2007). "A review of break-out floods from volcanogenic lakes in New Zealand". New Zealand Journal of Geology and Geophysics. 50 (2): 131–150. Bibcode:2007NZJGG..50..131M. doi:10.1080/00288300709509826. S2CID 129792354.
- ^ Sprigg, R.C. (1961). "The Oil and Gas Prospects of the St. Vincents Gulf Graben". The APPEA Journal. 1 (1): 71–88. doi:10.1071/AJ60011.
- ^ Stacey, A. R., and Berry, R. F., (2004). "The Structural history of Tasmania: a review for petroleum explorers", PESA Eastern Australasian Basins Symposium II
References
edit- McKnight, Tom L; Hess, Darrel (2000). "The Internal Processes: Graben". Physical Geography: A Landscape Appreciation. Upper Saddle River, NJ: Prentice Hall. pp. 417. ISBN 0-13-020263-0.