Open main menu

Galinstan is a brand-name and a common name for a liquid metal alloy whose composition is part of a family of eutectic alloys mainly consisting of gallium, indium, and tin. Such eutectic alloys are liquids at room temperature, typically melting at +11 °C (52 °F), while commercial Galinstan melts at −19 °C (−2 °F).[1]

An example of a typical eutectic mixture is 68% Ga, 22% In, and 10% Sn (by weight) though proportions vary between 62–95% Ga, 5–22% In, 0–16% Sn (by weight) while remaining eutectic; the exact composition of the commercial product “Galinstan” is not publicly known.

Due to the low toxicity and low reactivity of its component metals, galinstan finds use as a replacement for many applications that previously employed the toxic liquid mercury or the reactive NaK (sodiumpotassium alloy).


The name “Galinstan” is a portmanteau of gallium, indium, and stannum (Latin for “tin”).

The brand-name “Galinstan” is a registered trademark of the German company Geratherm Medical AG, but “galinstan” is in common use for any eutectic alloy of gallium, indium, and tin.

Physical propertiesEdit

Galinstan from a broken thermometer, easily wetting a piece of glass.

Galinstan tends to be “wet” and adhere to many materials, including glass, which limits its use compared to mercury.


Galinstan is commercially used as a mercury replacement in thermometers due to its nontoxic properties, but the inner tube surface must be coated with gallium oxide to prevent the alloy from wetting the glass surface.

Galinstan has higher reflectivity and lower density than mercury. In the field of astronomy it is considered as a replacement for mercury in liquid mirror telescopes.[8]

Galinstan may be used as a thermal interface for computer hardware cooling solutions, though major obstacles for widespread use are its cost and aggressive corrosive properties (it corrodes many other metals such as aluminium by dissolving them). It is also electrically conductive, and so needs to be applied more carefully than regular non-conductive compounds.

It is difficult to use for cooling fission-based nuclear reactors, because indium has a high absorption cross section for thermal neutrons, efficiently absorbing them and inhibiting the fission reaction. Conversely, it is being investigated as a possible coolant for fusion reactors. Unlike other liquid metals used in this application, such as lithium and mercury, the nonreactivity makes galinstan a safer material to use.[9]

Melting-point controversyEdit

The reported melting point of commercial Galinstan is inconsistent with the ternary eutectic alloy. Many commercially available gallium, indium, and tin eutectic alloys are advertised with a melting point of about +11°C, which is significantly higher than the −19°C reported for Galinstan.[10]

Differential Scanning Calorimetry (DSC) tests demonstrate the apparent source of discrepancy. On heating, solid Galinstan will melt at +11°C which is the eutectic point. On cooling, the alloy will remain liquid well below this point (depending on specimen geometry, containment surface, etc.). Several US patents [11] have been allowed for gallium eutectic alloys with additions of bismuth, antimony, and silver. The claims in these patents include melting temperatures below 0°C, however the test methodology described the liquid alloy remaining liquid when stored in a cold box overnight. Reproducing these results in a commercial batch have not been reported.

The official material safety data sheet (MSDS) mentions only that Galinstan is a “eutectic mixture of the metal components gallium, indium, and tin” with no further description provided. Additionally, a US patent to Geraberger Thermometerwerk GmbH[12] describes various related eutectic alloys, and mentions that they may contain up to 2% Bi (by weight) to increase fluidity, and up to 2% Sb to improve oxidation resistance. The resulting eutectic alloy would contain (by weight) 68–69% Ga, 21–22% In, and 9.5–10.5% Sn, with small amounts of Bi and Sb (0–2%, each), and an impurity level less than 0.001%.

The resulting material is reported by its manufacturer to have a melting point of −19.5°C and vaporisation point above 1800°C.

See alsoEdit


  1. ^ Surmann, P; Zeyat, H (Nov 2005). "Voltammetric analysis using a self-renewable non-mercury electrode". Analytical and Bioanalytical Chemistry. 383 (6): 1009–1013. doi:10.1007/s00216-005-0069-7. PMID 16228199.
  2. ^ "The Galinstan fluid MSDS" (PDF). 2004.
  3. ^ a b "Experimental Investigations of Electromagnetic Instabilities of Free Surfaces in a Liquid Metal Drop" (PDF). International Scientific Colloquium Modelling for Electromagnetic Processing, Hannover. March 24–26, 2003. Retrieved 2009-08-08.
  4. ^ Liu, Tianyi (April 2012). "Characterization of Nontoxic Liquid-Metal Alloy Galinstan for Applications in Microdevices". Journal of Microelectromechanical Systems. 21 (2): 448. CiteSeerX doi:10.1109/JMEMS.2011.2174421.
  5. ^ Jeong, Seung Hee; Hagman, Anton; Hjort, Klas; Jobs, Magnus; Sundqvist, Johan; Wu, Zhigang (2012). "Liquid alloy printing of microfluidic stretchable electronics". Lab on a Chip. 12 (22): 4657–64. doi:10.1039/c2lc40628d. ISSN 1473-0197. PMID 23038427.
  6. ^ Handschuh-Wang, Stephan; Chen, Yuzhen; Zhu, Lifei; Zhou, Xuechang (2018-06-20). "Analysis and Transformations of Room-Temperature Liquid Metal Interfaces - A Closer Look through Interfacial Tension". ChemPhysChem. 19 (13): 1584–1592. doi:10.1002/cphc.201800559. ISSN 1439-4235.
  7. ^ Hodes, Marc; Zhang, Rui; Steigerwalt Lam, Lisa; Wilcoxon, Ross; Lower, Nate (2014). "On the Potential of Galinstan-Based Minichannel and Minigap Cooling". IEEE Transactions on Components, Packaging and Manufacturing Technology. 4 (1): 46–56. doi:10.1109/tcpmt.2013.2274699. ISSN 2156-3950.
  8. ^ Minerals Yearbook Metals and Minerals 2010 Volume I. Government Printing Office. 2010. p. 48.4. Extract of page 48.4
  9. ^ Lee C. Cadwallader (2003). "Gallium Safety in the Laboratory" (preprint). Cite journal requires |journal= (help)
  10. ^ Ga-In-Sn Phase Diagram (1978 Evans D.S.) ASM Alloy Phase Diagrams Center, P. Villars, editor-in-chief; H. Okamoto and K. Cenzual, section editors; ASM International, Materials Park, OH, USA, 2007
  11. ^ U.S. Patent 5,508,003–Rancourt, U.S. Patent 5,792,236–Taylor
  12. ^ US patent 6019509, Geraberger Thermometerwerk GmbH, "Low Melting Gallium, Indium, and Tin Eutectic Alloys, and Thermometers Employing Same", issued 2000-02-01 
  • Scharmann, F.; Cherkashinin, G.; Breternitz, V.; Knedlik, Ch.; Hartung, G.; Weber, Th.; Schaefer, J. A. (2004). "Viscosity effect on GaInSn studied by XPS". Surface and Interface Analysis. 36 (8): 981. doi:10.1002/sia.1817.
  • Dickey, Michael D.; Chiechi, Ryan C.; Larsen, Ryan J.; Weiss, Emily A.; Weitz, David A.; Whitesides, George M. (2008). "Eutectic Gallium-Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature". Advanced Functional Materials. 18 (7): 1097. doi:10.1002/adfm.200701216.

External linksEdit