The Four Thirds System is a standard created by Olympus and Eastman Kodak for digital single-lens reflex camera (DSLR) and mirrorless camera design and development.[1]

Four Thirds logo

The system provides a standard that, with digital cameras and lenses available from multiple manufacturers, allows for the interchange of lenses and bodies from different manufacturers. U.S. patent 6,910,814 seems to cover the standard. Proponents describe it as an open standard, but companies may use it only under a non-disclosure agreement.[2]

Unlike older single-lens reflex (SLR) systems, Four Thirds was designed from the start to be entirely digital. Many lenses are extensively computerised, to the point that Olympus offers firmware updates for many of them. Lens design has been tailored to the requirements of digital sensors, most notably through telecentric designs. The size of the sensor is significantly smaller than for most DSLRs and this implies that lenses, especially telephoto lenses, can be smaller. For example, a Four Thirds lens with a 300 mm focal length would cover about the same angle of view as a 600 mm focal length lens for the 35 mm film standard, and is correspondingly more compact. Thus, the Four Thirds System has crop factor (focal length multiplier) of about 2, and while this enables longer focal length for greater magnification, it does not necessarily aid the manufacture of wide angle lenses.

The image sensor format, between those of larger SLRs and smaller point-and-shoot compact digital cameras, yields intermediate levels of cost, performance, and convenience.

Sensor size and aspect ratio edit

 
Drawing showing the relative sizes of sensors used in most current digital cameras, including Four Thirds System

The name of the system stems from the size of the image sensor used in the cameras, which is commonly referred to as a 4/3" type or 4/3 type sensor. The common inch-based sizing system is derived from vacuum image-sensing video camera tubes, which are now obsolete. The imaging area of a Four Thirds sensor is equal to that of a video camera tube of 4/3 inch diameter.[3]

 
Sizes of the sensors used in most current digital cameras relative to a standard 35mm frame

The usual size of the sensor is 18 mm × 13.5 mm (22.5 mm diagonal), with an imaging area of 17.3 mm × 13.0 mm (21.63 mm diagonal).[3][4] The sensor's area is about 30–40% smaller than APS-C sensors used in most other DSLRs, but still around 9 times larger than the 1/2.5" sensors typically used in compact digital cameras. Incidentally, the imaging area of a Four Thirds sensor is almost identical to that of 110 film.

The emphasis on the 4:3 image aspect ratio sets Four Thirds apart from other DSLR systems, which usually adhere to the 3:2 aspect ratio of the traditional 35mm format. However, the standard only specifies the sensor diagonal, thus Four Thirds cameras using the standard 3:2 aspect ratio would be possible;[5] notably newer Panasonic Micro Four Thirds models even offer shooting at multiple aspect ratios while maintaining the same image diagonal. For instance, the Panasonic GH1 uses a multi-aspect sensor designed to maximize use of the image circle at 4:3, 3:2, and 16:9; each ratio having a diagonal of 22.5 mm.[6]

Sensor aspect ratio influences lens design. For example, many lenses designed by Olympus for the Four Thirds System contain internal rectangular baffles or permanently mounted "petal" lens hoods that optimise their operation for the 4:3 aspect ratio.[citation needed]

In an interview John Knaur, a Senior Product Manager at Olympus, stated that "The FourThirds refers to both the size of the imager and the aspect ratio of the sensor".[7] He also pointed out the similarities between 4:3 and the standard printing size of 8×10 as well as medium format 6×4.5 and 6×7 cameras, thus helping explain Olympus' rationale on choosing 4:3 rather than 3:2.

Advantages, disadvantages and other considerations edit

Advantages edit

  •  
    An Olympus E-420 camera, sold with a very thin 25mm "pancake" lens. The E-4XX series was advertised as the smallest true DSLR in the world.[8]
    The smaller sensor size makes possible smaller and lighter camera bodies and lenses. In particular, the Four-Thirds system allows the development of compact, large aperture lenses. Corresponding lenses become larger, heavier and more expensive when designed for larger sensor formats.
  • Telecentric optical path means that light hitting the sensor is traveling closer to perpendicular to the sensor, resulting in brighter corners, and improved off-center resolution, particularly on wide angle lenses.
  • Because the flange focal distance is significantly shorter than those on Canon FD, Canon EF, Nikon F and Pentax K, lenses for many other SLR types including the old Olympus OM System must be fitted to Four Thirds cameras with simple mechanical adapter rings. Such mechanical adapter rings typically require manual setting of focus and aperture.[9]

Disadvantages edit

  • Compared to a larger sensor with equivalent pixel count, a Four Thirds sensor gathers disproportionately less light per pixel. Not only are the individual photosites smaller, but each loses more of its total area to support circuitry and edge shading than a larger photosite would. With less captured light to work with, each photosite requires additional amplification, with associated higher noise as well as reduced dynamic range. A telecentric lens design can mitigate this problem, but the sensor remains more sensitive to the angle of incoming light, and has more pronounced image corner light falloff.
  • The resolution of a sensor is often measured as the total sensor pixel count in megapixels, and this is often a primary decision-making factor in choosing a camera. Smaller sensors are tougher to manufacture with the same pixel count as larger sensors, and place a greater demand on optics, since a lens must achieve greater absolute resolving power to produce an adequate picture on a smaller sensor, compared to a larger sensor of the same pixel resolution. A smaller pixel active area reduces the averaging effect and allows a better sampling of high spatial frequencies, mitigating this problem.[10]
  • To get the same angle of view as with a larger sensor, the focal length of the lens used with a Four Thirds sensor needs to be shorter. However, to get the same depth of field and light gathering capability as with a larger sensor, the lens aperture needs to be kept constant. In other words, the focal ratio of the lens must be smaller on the Four Thirds system to give the same depth of field[11] and image noise. Since it is more difficult to produce faster lenses (lenses with smaller focal ratios), it can be difficult or impossible to find a lens that produces as shallow a depth of field, and gathers as much light, as an equivalent lens on larger formats. For instance, a 35mm "full-frame" DSLR can match the depth of field of a Four Thirds camera by closing down the aperture by two stops; but it may be more difficult or impossible for a Four Thirds System to match the shallow depth of field of a 35mm camera using a fast lens.

Differences edit

  • Most Four Thirds cameras (notably those manufactured by Olympus) use an aspect ratio of 4:3 rather than 3:2; newer models offer cropping to 3:2, but this results in a reduced image diagonal (i.e., the effective crop factor is then 2.08).[12]

Four Thirds System companies edit

As of the 2006 Photo Marketing Association Annual Convention and Trade Show, the Four Thirds consortium consisted of the following companies:

This does not imply a commitment to end user products by each company. Historically, only Leica, Olympus, and Panasonic have produced bodies. Olympus and Leica/Panasonic have made dedicated Four Thirds lenses, and Sigma makes adapted versions of their "DC" lenses for APS-C format DSLRs. Kodak once sold sensors to Olympus for use in their Four Thirds bodies, but the newer Olympus Four Thirds cameras used Panasonic sensors.

Four Thirds System cameras edit

The majority of Four Thirds System cameras and Four Thirds lenses are made by Olympus. Many Four Thirds cameras use "sensor-shift" in-body image stabilization, making the need for image stabilization technology in its lenses unnecessary. All Four Thirds cameras also incorporate an automatic sensor cleaning device, in which a thin glass filter in front of the sensor vibrates at 30 kHz, causing dust to fall off and adhere to a piece of sticky material below. Olympus' E-system camera bodies are noted for their inclusion of a wide range of firmware-level features and customization, good JPEG engine, and compact size. Because of the smaller format of Four Thirds, the viewfinders tend to be smaller than on comparable cameras.[13][14]

Manufacture of Four Thirds cameras came to an end after the introduction of the mirrorless Micro Four Thirds format. Discontinued models include:

Four Thirds System lenses edit

 
Four lenses for the Four Thirds System. From left to right, three Olympus zooms (40–150mm, 11–22mm and 14–54mm) and a Sigma prime (30mm).

The Four Thirds lens mount is specified to be a bayonet type with a flange focal distance of 38.67 mm.

There were 41 lenses made for the Four Thirds System standard, including two that were modified and re-released in approximately 2009 with improved mechanisms but otherwise identical optics.[a][15]

Before announcing that it would stop production of Four Thirds lenses in early 2017,[16] Olympus produced 24 lenses for the Four Thirds System under their "Zuiko Digital" brand. They are divided into three grades — Standard, High Grade and Super High Grade. High Grade lenses have faster maximum apertures, but are significantly more expensive and larger, and the Super High Grade zooms have constant maximum aperture over the full zoom range; all but the Standard grade are weather-sealed. Lenses within each grade cover the range from wide-angle to super telephoto.[17][18] The Zuiko Digital lenses are well regarded for their consistently good optics.[19] The following table lists all Zuiko Digital lenses available at the time Olympus stopped Four Thirds production:[20]

Wide angle Standard Telephoto Super telephoto Special-purpose
Standard 9–18 f/4–5.6 14–42 f/3.5–5.6
25 f/2.8 "pancake"
40–150 f/4–5.6 70–300 f/4–5.6 macro 35 f/3.5 macro
18–180 f/3.5-6.3 superzoom
High Grade 11–22 f/2.8–3.5 12–60 f/2.8–4
14–54 f/2.8–3.5 II
50–200 f/2.8–3.5 SWD 50 f/2 macro
f/3.5 fisheye
Super High Grade 7–14 f/4 14–35 f/2 35–100 f/2
150 f/2
90–250 f/2.8
300 f/2.8

Olympus also made 1.4× and 2× teleconverters and an electronically coupled extension tube.

Sigma has adapted 13 lenses for the Four Thirds System, ranging from 10 mm to 800 mm, including several for which no equivalent exists: the fast primes (30 mm f/1.4 and 50 mm f/1.4) and extreme telephoto (300–800 mm f/5.6). As of 2014 all Sigma lenses for the Four Thirds System have been discontinued.

Leica has designed four lenses for the Four Thirds System: fast and slow normal zooms and a 14–150 mm super-zoom, all with Panasonic's image stabilization system, and an unstabilized f/1.4 25 mm prime. These are manufactured and sold by Panasonic.

An official list of available lenses can be found on Four-Thirds.org web site.[21]

As for the system itself, it was silently discontinued in favor of the Micro Four Thirds System.

List of Four Thirds System lenses[22][23]
Name Mfr. F.L. (mm) Ap., Blades[b] Splash / Dust[c] OIS Const. Angle Min. focus Filter (mm) Dims. (Φ×L) Wgt. Notes / Refs.
Fisheye lenses
ZUIKO DIGITAL ED 8mm F3.5 Fisheye Olympus 8 f/3.5–22, 7(C)   Yes   No 10e/6g 180° 0.135 m (5.31 in) 79 mm × 77 mm (3.11 in × 3.03 in) 485 g (17.1 oz) [24][25]
Ultra wide angle lenses
ZUIKO DIGITAL ED 7-14mm F4.0 Olympus 7–14 f/4–22, 7(C)   Yes   No 18e/12g 114–75° 0.25 m (9.84 in) 86.5 mm × 119.5 mm (3.41 in × 4.70 in) 780 g (27.5 oz) [26][27]
ZUIKO DIGITAL ED 9-18mm F4.0-5.6 Olympus 9–18 f/4~5.6–22, 7(C)   No   No 13e/9g 100–62° 0.25 m (9.84 in) 72 79.5 mm × 73 mm (3.13 in × 2.87 in) 275 g (9.7 oz) [26][28]
Wide angle lenses
10-20mm F4-5.6 EX DC HSM Sigma 10–20 f/4~5.6–22, 6   No   No 14e/10g 94.5–56.8° 0.24 m (9.45 in) 77 83.5 mm × 86.4 mm (3.29 in × 3.40 in) 495 g (17.5 oz) [26][29]
ZUIKO DIGITAL 11-22mm F2.8-3.5 Olympus 11–22 f/2.8~3.5–22, 7   Yes   No 12e/10g 89–53° 0.28 m (11.02 in) 72 75 mm × 92.5 mm (2.95 in × 3.64 in) 485 g (17.1 oz) [26][30]
Normal lenses
ZUIKO DIGITAL ED 12-60mm F2.8-4.0 SWD Olympus 12–60 f/2.8~4–22, 7(C)   Yes   No 14e/10g 84–20° 0.25 m (9.84 in) 72 79.5 mm × 98.5 mm (3.13 in × 3.88 in) 575 g (20.3 oz) [31][32]
ZUIKO DIGITAL ED 14-35mm F2.0 SWD Olympus 14–35 f/2.0–22, 9(C)   Yes   No 18e/17g 75–34° 0.35 m (13.78 in) 77 86 mm × 123 mm (3.39 in × 4.84 in) 900 g (31.7 oz) [31][33]
ZUIKO DIGITAL ED 14-42mm F3.5-5.6 Olympus 14–42 f/3.5~5.6–22, 7(C)   No   No 10e/8g 75–29° 0.25 m (9.84 in) 58 65.5 mm × 61 mm (2.58 in × 2.40 in) 190 g (6.7 oz) [31][34]
ZUIKO DIGITAL ED 14-45mm F3.5-5.6 Olympus 14–45 f/3.5~5.6–22, 7   No   No 12e/10g 75–27° 0.38 m (14.96 in) 58 71 mm × 86.5 mm (2.80 in × 3.41 in) 285 g (10.1 oz) [35][36]
LEICA D VARIO-ELMARIT 14-50mm F2.8-3.5 ASPH. MEGA O.I.S. Panasonic 14–50 f/2.8~3.5–22, 7   No   Yes 16e/12g 75–24° 0.29 m (11.42 in) 72 78.1 mm × 97.4 mm (3.07 in × 3.83 in) 490 g (17.3 oz) [31][37]
LEICA D VARIO-ELMAR 14-50mm F3.8-5.6 ASPH. MEGA O.I.S. Panasonic f/3.8~5.6–22, 7   No   Yes 15e/11g 67 78 mm × 84.5 mm (3.07 in × 3.33 in) 435 g (15.3 oz) [31][38]
ZUIKO DIGITAL 14-54mm F2.8-3.5 Olympus 14–54 f/2.8~3.5–22, 7   Yes   No 15e/11g 75–23° 0.22 m (8.66 in) 67 73.5 mm × 88.5 mm (2.89 in × 3.48 in) 435 g (15.3 oz) [35][39]
ZUIKO DIGITAL 14-54mm F2.8-3.5 II f/2.8~3.5–22, 7(C) 74.5 mm × 88.5 mm (2.93 in × 3.48 in) 440 g (15.5 oz) [31][40]
ZUIKO DIGITAL ED 17.5-45mm F3.5-5.6 Olympus 17.5–45 f/3.5~5.6–22, 7(C)   No   No 7e/7g 63–27° 0.28 m (11.02 in) 52 71 mm × 70 mm (2.80 in × 2.76 in) 210 g (7.4 oz) Kit lens with E-500[41]
18-50mm F2.8 EX DC MACRO Sigma 18–50 f/2.8–22, 7   No   No 15e/13g 62–24° 0.2 m (7.87 in) 72 79 mm × 91.1 mm (3.11 in × 3.59 in) 525 g (18.5 oz) [31][42]
18-50mm F3.5-5.6 DC Sigma f/3.5~5.6–22, 7   No   No 8e/8g 0.25 m (9.84 in) 58 67.5 mm × 67.8 mm (2.66 in × 2.67 in) 270 g (9.5 oz) [31][43]
24mm F1.8 EX DG ASPHERICAL MACRO Sigma 24 f/1.8–22, 9   No   No 10e/9g 49° 0.18 m (7.09 in) 77 83.6 mm × 87.9 mm (3.29 in × 3.46 in) 520 g (18.3 oz) [24][44]
LEICA D SUMMILUX 25mm F1.4 ASPH. Panasonic 25 f/1.4–16, 7(C)   No   No 10e/9g 47° 0.38 m (14.96 in) 72 77.7 mm × 75 mm (3.06 in × 2.95 in) 510 g (18.0 oz) [24][45]
ZUIKO DIGITAL 25mm F2.8 Olympus 25 f/2.8–22, 7(C)   No   No 5e/4g 47° 0.2 m (7.87 in) 43 64 mm × 23.5 mm (2.52 in × 0.93 in) 96 g (3.4 oz) [24][46]
30mm F1.4 EX DC HSM Sigma 30 f/1.4–16, 8   No   No 7e/7g 40° 0.4 m (15.75 in) 62 77.8 mm × 63.9 mm (3.06 in × 2.52 in) 410 g (14.5 oz) [24][47]
Superzoom lenses
LEICA D VARIO-ELMAR 14-150mm F3.5-5.6 ASPH. MEGA O.I.S. Panasonic 14–150 f/3.5~5.6–22, 7   No   Yes 15e/11g 75–8.2° 0.5 m (19.69 in) 72 78.5 mm × 90.4 mm (3.09 in × 3.56 in) 535 g (18.9 oz) [31][48]
ZUIKO DIGITAL ED 18-180mm F3.5-6.3 Olympus 18–180 f/3.5~6.3–22, 7   No   No 15e/13g 62–6.9° 0.45 m (17.72 in) 62 78 mm × 84.5 mm (3.07 in × 3.33 in) 435 g (15.3 oz) [31][49]
Telephoto lenses
ZUIKO DIGITAL ED 35-100mm F2.0 Olympus 35–100 f/2.0–22, 9(C)   Yes   No 21e/18g 62–6.9° 1.4 m (55.12 in) 77 96.5 mm × 213.5 mm (3.80 in × 8.41 in) 1,650 g (58.2 oz) [50][51]
ZUIKO DIGITAL 40-150mm F3.5-4.5 Olympus 40–150 f/3.5~4.5–22, 7(C)   No   No 13e/10g 62–6.9° 1.5 m (59.06 in) 58 77 mm × 107 mm (3.03 in × 4.21 in) 425 g (15.0 oz) [52][53]
ZUIKO DIGITAL ED 40-150mm F4-5.6 f/4.0~5.6–22, 7(C) 12e/9g 1.4 m (55.12 in) 65.5 mm × 72 mm (2.58 in × 2.83 in) 220 g (7.8 oz) [50][54]
50mm F1.4 EX DG HSM Sigma 50 f/1.4–16, 9   No   No 8e/6g 62–6.9° 0.45 m (17.72 in) 77 84.5 mm × 73.7 mm (3.33 in × 2.90 in) 530 g (18.7 oz) [24][55]
ZUIKO DIGITAL ED 50-200mm F2.8-3.5 Olympus 50–200 f/2.8~3.5–22, 9   Yes   No 16e/15g 24–6.2° 1.2 m (47.24 in) 67 83 mm × 157 mm (3.27 in × 6.18 in) 920 g (32.5 oz) [52][56]
ZUIKO DIGITAL ED 50-200mm F2.8-3.5 SWD f/2.8~3.5–22, 9(C) 86.5 mm × 157 mm (3.41 in × 6.18 in) 995 g (35.1 oz) [50][57]
APO 50-500mm F4.0-6.3 EX DG HSM Sigma 50–500 f/4.0~6.3–22, 9   No   No 20e/16g 24–2.5° 1.0–3.0 m (39.37–118.11 in) 86 95 mm × 223.9 mm (3.74 in × 8.81 in) 1,830 g (64.6 oz) [52][58]
55-200mm F4.0-5.6 DC Sigma 55–200 f/4.0~5.6–22, 8   No   No 12e/9g 23–6.2° 1.1 m (43.31 in) 55 71.5 mm × 92.5 mm (2.81 in × 3.64 in) 330 g (11.6 oz) [52][59]
APO 70-200mm F2.8 II EX DG MACRO HSM Sigma 70–200 f/2.8–22, 9   No   No 18e/15g 18–6.2° 1.0 m (39.37 in) 77 86.5 mm × 189.8 mm (3.41 in × 7.47 in) 1,385 g (48.9 oz) [52][60]
ZUIKO DIGITAL ED 70-300mm F4.0-5.6 Olympus 70–300 f/4.0~5.6–22, 9(C)   No   No 14e/10g 18–4.1° 0.96–1.2 m (37.80–47.24 in) 58 80 mm × 127.5 mm (3.15 in × 5.02 in) 615 g (21.7 oz) [50][61]
ZUIKO DIGITAL ED 90-250mm F2.8 Olympus 90–250 f/2.8–22, 9(C)   Yes   No 17e/12g 14–5.0° 2.5 m (98.43 in) 105 124 mm × 276 mm (4.88 in × 10.87 in) 3,270 g (115.3 oz) [50][62]
APO 135-400mm F4.5-5.6 DG Sigma 135–400 f/4.5~5.6–22, 9   No   No 13e/11g 9.2–3.1° 2.0–2.2 m (78.74–86.61 in) 77 83.5 mm × 189 mm (3.29 in × 7.44 in) 1,280 g (45.2 oz) [52][63]
ZUIKO DIGITAL ED 150mm F2.0 Olympus 150 f/2.0–22, 9(C)   Yes   No 11e/9g 8.2° 1.4 m (55.12 in) 82 100 mm × 150 mm (3.94 in × 5.91 in) 1,465 g (51.7 oz) [24][64]
ZUIKO DIGITAL ED 300mm F2.8 Olympus 300 f/2.8–22, 9   Yes   No 13e/11g 4.1° 2.4 m (94.49 in) 43(D) 127 mm × 285 mm (5.00 in × 11.22 in) 3,290 g (116.1 oz) [24][65]
APO 300-800mm F5.6 EX DG HSM Sigma 300–800 f/5.6–32, 9   No   No 18e/16g 4.1–1.6° 6.0 m (236.22 in) 46(R) 156.5 mm × 549.4 mm (6.16 in × 21.63 in) 5,915 g (208.6 oz) [52][66]
Macro lenses
ZUIKO DIGITAL 35mm F3.5 Macro Olympus 35 f/3.5–22, 7(C)   No   No 6e/6g 34° 0.146 m (5.75 in) 52 71 mm × 53 mm (2.80 in × 2.09 in) 165 g (5.8 oz) [67][68]
ZUIKO DIGITAL ED 50mm F2.0 Macro Olympus 50 f/2.0–22, 7   Yes   No 11e/10g 24° 0.24 m (9.45 in) 52 71 mm × 61.5 mm (2.80 in × 2.42 in) 300 g (10.6 oz) [67][69]
MACRO 105mm F2.8 EX DG Sigma 105 f/2.8–22, 8   No   No 11e/10g 12° 0.31 m (12.20 in) 58 74 mm × 102.9 mm (2.91 in × 4.05 in) 470 g (16.6 oz) [67][70]
APO MACRO 150mm F2.8 EX DG HSM Sigma 150 f/2.8–22, 9   No   No 16e/12g 8.2° 0.38 m (14.96 in) 72 79.6 mm × 142.4 mm (3.13 in × 5.61 in) 920 g (32.5 oz) [67][71]
Teleconverters
ZUIKO DIGITAL 1.4× Teleconverter EC-14 Olympus 1.4× 1.4×   No   No 6e/5g approx. ÷1.4 ×1 68 mm × 22 mm (2.68 in × 0.87 in) 170 g (6.0 oz) [72][73]
ZUIKO DIGITAL 2.0× Teleconverter EC-20 Olympus 2.0× 2.0×   No   No 7e/5g approx. ÷2 ×1 68 mm × 41 mm (2.68 in × 1.61 in) 225 g (7.9 oz) [72][74]

Micro Four Thirds System edit

 
Concept Micro Four Thirds camera by Olympus

In August 2008, Olympus and Panasonic introduced a new format, Micro Four Thirds.

The new system uses the same sensor, but removes the mirror box from the camera design. A live preview is shown on either the camera's main liquid-crystal display or via an electronic viewfinder, as in digital compact cameras. Autofocus may be accomplished via a contrast detection process using the main imager, again similar to digital compact cameras. Some Olympus and Panasonic manufactured camera bodies also feature phase detection auto focus built into the sensor. The goal of the new system was to allow for even smaller cameras, competing directly with higher-end point-and-shoot compact digital cameras and DSLRs. The smaller flange focal distance allows for more compact normal and wide angle lenses. It also facilitates the use, with an adapter, of lenses based on other mounting systems, including many manual focus lenses from the seventies and eighties.

In particular, Four Thirds lenses can be used on Micro Four Thirds bodies with an adapter; however, "all of the functions of the Micro Four Thirds System may not always be available."[75]

See also edit

Notes edit

  1. ^ These were the 14–54mm and 50–200mm, both manufactured by Olympus; each version is counted as a separate lens.
  2. ^ Number of aperture blades; (C) if designed for a circular opening
  3. ^ Sealed against splashes and dust.

References edit

  1. ^ "Kodak and Olympus join forces". DPReview.com. DPReview.com. 2001-02-13. Retrieved 2007-11-07.
  2. ^ "Benefits". Four Thirds Consortium. Retrieved 2008-12-10. Details of the Four Thirds System standard are available to camera equipment manufacturers and industry organizations on an NDA basis. Full specifications cannot be provided to individuals or other educational/research entities.
  3. ^ a b "No more compromises: The Four Thirds Standard". Olympus. Europe. Archived from the original on 2011-07-14. Retrieved 2009-04-17.
  4. ^ "The Four Thirds Standard". Four Thirds Consortium. 2008. Archived from the original on 2009-03-07. Retrieved 2009-04-17. {{cite journal}}: Cite journal requires |journal= (help)
  5. ^ "Four Thirds Standard" (whitepaper). Four Thirds Consortium. 2009. Retrieved 2009-10-09. {{cite journal}}: Cite journal requires |journal= (help)
  6. ^ Utpott, Björn, G1 sensor vs GH1 sensor (JPEG diagram), PBase.
  7. ^ Knaur, John (October 1, 2002), Interview, A Digital Eye, archived from the original on 2002-12-05.
  8. ^ Olympus E400 Digital Camera Review, Let’s go digital.
  9. ^ "OMs on E1", Cornucopia, Biofos.
  10. ^ Full Frame Sensor vs Crop Sensor – Which is Right For You?, Digital Photography School, 20 August 2008.
  11. ^ "Depth of Field Equations". www.dofmaster.com. Retrieved 12 April 2018.
  12. ^ "Specs - Lumix G Digital Camera: DMC-GX7| Panasonic Australia". Retrieved 2015-08-28.
  13. ^ "DPReview E-30 conclusions page". 2009-04-09.
  14. ^ "DPReview E-510 review". 2009-04-09.
  15. ^ Wrotniak, Lens list.
  16. ^ Butler, Richard (March 10, 2017). "In memoriam: Olympus brings down the curtain on the legacy Four Thirds system". Digital Photography Review. Retrieved March 16, 2017.
  17. ^ "Olympus E-System Zuiko Digital Interchangeable Lens Roadmap" (PDF). UK: Olympus. Archived from the original (PDF) on 2007-10-15. Retrieved 2007-11-29.
  18. ^ "Olympus Lens Tests". SLRgear.
  19. ^ "Olympus Zuiko 12–60mm 1:2.8–1:4 lens review". DPReview.
  20. ^ "Lens list". Asia: Olympus. Retrieved 2009-08-20.
  21. ^ Lens list, Four Thirds.
  22. ^ "Lens Catalog" (PDF) (in Japanese). Four Thirds Consortium. 2010. Archived from the original (PDF) on November 24, 2010.
  23. ^ "Lens Catalog" (PDF). Four Thirds Consortium. 2012. Archived from the original (PDF) on May 23, 2012.
  24. ^ a b c d e f g h "Four Thirds Lenses: Single Focal Length". Four Thirds Consortium. Archived from the original on June 20, 2009.
  25. ^ "ZUIKO DIGITAL ED 8mm F3.5 Fisheye". Olympus Imaging Asia. Archived from the original on February 28, 2012.
  26. ^ a b c d "Four Thirds Lenses: Wide Zoom". Four Thirds Consortium. Archived from the original on June 19, 2009.
  27. ^ "ZUIKO DIGITAL ED 7-14mm F4.0". Olympus Imaging Asia. Archived from the original on February 28, 2012.
  28. ^ "ZUIKO DIGITAL ED 9-18mm F4.0-5.6". Olympus Imaging Asia. Archived from the original on February 20, 2012.
  29. ^ "10-20mm F4-5.6 EX DC HSM". Sigma. Archived from the original on March 26, 2010.
  30. ^ "ZUIKO DIGITAL 11-22mm F2.8-3.5". Olympus Imaging Asia. Archived from the original on April 22, 2012.
  31. ^ a b c d e f g h i j "Four Thirds Lenses: Standard Zoom". Four Thirds Consortium. Archived from the original on June 19, 2009.
  32. ^ "ZUIKO DIGITAL ED 12-60mm F2.8-4.0 SWD". Olympus Imaging Asia. Archived from the original on February 28, 2012.
  33. ^ "ZUIKO DIGITAL ED 14-35mm F2.0 SWD". Olympus Imaging Asia. Archived from the original on February 28, 2012.
  34. ^ "ZUIKO DIGITAL ED 14-42mm F3.5-5.6". Olympus Imaging Asia. Archived from the original on April 1, 2012.
  35. ^ a b "Four Thirds Lenses: Standard Zoom (discontinued models)". Four Thirds Consortium. Archived from the original on April 19, 2012.
  36. ^ "ZUIKO DIGITAL 14-45mm F3.5-5.6". Olympus Imaging Asia. Archived from the original on March 8, 2012.
  37. ^ "LEICA D VARIO-ELMARIT 14-50mm/F2.8-3.5 ASPH. MEGA O.I.S. L-ES014050". LUMIX Leica D Lenses. Panasonic. Archived from the original on May 17, 2009.
  38. ^ "LEICA D VARIO-ELMAR 14-50mm/F3.8-5.6 ASPH. MEGA O.I.S. L-RS014050". LUMIX Leica D Lenses. Panasonic. Archived from the original on May 15, 2009.
  39. ^ "ZUIKO DIGITAL 14-54mm F2.8-3.5". Olympus Imaging Asia. Archived from the original on May 6, 2012. Retrieved 31 October 2023.
  40. ^ "ZUIKO DIGITAL 14-54mm F2.8-3.5 II". Olympus Imaging Asia. Archived from the original on February 28, 2012. Retrieved 31 October 2023.
  41. ^ "ZUIKO DIGITAL 17.5-45mm F3.5-5.6". Olympus Imaging Asia. Archived from the original on February 13, 2012.
  42. ^ "18-50mm F2.8 EX DC MACRO". Sigma. Archived from the original on March 23, 2010.
  43. ^ "18-50mm F3.5-5.6 DC". Sigma. Archived from the original on May 18, 2007.
  44. ^ "24mm F1.8 EX DG ASPHERICAL MACRO". Sigma. Archived from the original on May 19, 2007.
  45. ^ "LEICA D SUMMILUX 25mm/F1.4 ASPH. L-X025". LUMIX Leica D Lenses. Panasonic. Archived from the original on May 15, 2009.
  46. ^ "ZUIKO DIGITAL 25mm F2.8". Olympus Imaging Asia. Archived from the original on April 1, 2012. Retrieved 31 October 2023.
  47. ^ "30mm F1.4 EX DC HSM". Sigma. Archived from the original on March 27, 2010.
  48. ^ "LEICA D VARIO-ELMAR 14-150mm/F3.5-5.6 ASPH. MEGA O.I.S. L-RS014150". LUMIX Leica D Lenses. Panasonic. Archived from the original on May 13, 2009.
  49. ^ "ZUIKO DIGITAL 18-180mm F3.5-6.3". Olympus Imaging Asia. Archived from the original on March 31, 2012. Retrieved 31 October 2023.
  50. ^ a b c d e "Four Thirds Lenses: Telephoto Zoom". Four Thirds Consortium. Archived from the original on June 19, 2009.
  51. ^ "ZUIKO DIGITAL ED 35-100mm F2.0". Olympus Imaging Asia. Archived from the original on February 28, 2012. Retrieved 31 October 2023.
  52. ^ a b c d e f g "Four Thirds Lenses: Telephoto Zoom (discontinued models)". Four Thirds Consortium. Archived from the original on September 23, 2011.
  53. ^ "ZUIKO DIGITAL 40-150mm F3.5-4.5". Olympus Imaging Asia. Archived from the original on March 24, 2012.
  54. ^ "ZUIKO DIGITAL ED 40-150mm F4.0-5.6". Olympus Imaging Asia. Archived from the original on April 1, 2012.
  55. ^ "50mm F1.4 EX DG HSM". Sigma. Archived from the original on March 27, 2010.
  56. ^ "ZUIKO DIGITAL ED 50-200mm F2.8-3.5". Olympus Imaging Asia. Archived from the original on April 22, 2012. Retrieved 31 October 2023.
  57. ^ "ZUIKO DIGITAL ED 50-200mm F2.8-3.5 SWD". Olympus Imaging Asia. Archived from the original on May 6, 2012. Retrieved 31 October 2023.
  58. ^ "50-500mm F4-6.3 EX DG HSM". Sigma. Archived from the original on March 23, 2010.
  59. ^ "55-200mm F4-5.6 DC". Sigma. Archived from the original on June 16, 2007.
  60. ^ "70-200mm F2.8 EX DG APOMacro HSM II". Sigma. Archived from the original on March 25, 2010.
  61. ^ "ZUIKO DIGITAL ED 70-300mm F4.0-5.6". Olympus Imaging Asia. Archived from the original on March 24, 2012.
  62. ^ "ZUIKO DIGITAL ED 90-250mm F2.8". Olympus Imaging Asia. Archived from the original on March 13, 2012. Retrieved 31 October 2023.
  63. ^ "APO 135-400mm F4.5-5.6 DG". Sigma. Archived from the original on May 19, 2007.
  64. ^ "ZUIKO DIGITAL ED 150mm F2.0". Olympus Imaging Asia. Archived from the original on April 1, 2012. Retrieved 31 October 2023.
  65. ^ "ZUIKO DIGITAL ED 300mm F2.8 (Built to Order)". Olympus Imaging Asia. Archived from the original on May 6, 2012. Retrieved 31 October 2023.
  66. ^ "300-800mm F5.6 EX DG APO HSM". Sigma. Archived from the original on March 27, 2010.
  67. ^ a b c d "Four Thirds Lenses: Macro". Four Thirds Consortium. Archived from the original on June 20, 2009.
  68. ^ "ZUIKO DIGITAL 35mm F3.5 Macro". Olympus Imaging Asia. Archived from the original on January 11, 2012.
  69. ^ "ZUIKO DIGITAL ED 50mm F2.0 Macro". Olympus Imaging Asia. Archived from the original on April 19, 2012. Retrieved 31 October 2023.
  70. ^ "105mm F2.8 EX DG Macro". Sigma. Archived from the original on March 11, 2010.
  71. ^ "150mm F2.8 EX APO DG HSM Macro". Sigma. Archived from the original on February 25, 2010.
  72. ^ a b "Four Thirds Lenses: Accessories". Four Thirds Consortium. Archived from the original on June 22, 2009.
  73. ^ "ZUIKO DIGITAL 1.4× Teleconverter EC-14". Olympus Imaging Asia. Archived from the original on February 28, 2012. Retrieved 31 October 2023.
  74. ^ "ZUIKO DIGITAL 2.0× Teleconverter EC-20". Olympus Imaging Asia. Archived from the original on May 4, 2012. Retrieved 31 October 2023.
  75. ^ Micro Four Thirds Official benefits list.

External links edit