Open main menu

Engineering physics

 | title =Major: Engineering Physics
 | newspaper =The Princeton Review
 | page =01 
 | publisher = The Princeton Review
 | year = 2017
 | url =
 | accessdate=June 4, 2017}}</ref>[1][2][3]


Unlike traditional engineering disciplines, engineering science/physics is not necessarily confined to a particular branch of science, engineering or physics. Instead, engineering science/physics is meant to provide a more thorough grounding in applied physics for a selected specialty such as optics, quantum physics, materials science, applied mechanics, electronics, nanotechnology, microfabrication, microelectronics, computing, photonics, mechanical engineering, electrical engineering, nuclear engineering, biophysics, control theory, aerodynamics, energy, solid-state physics, etc. It is the discipline devoted to creating and optimizing engineering solutions through enhanced understanding and integrated application of mathematical, scientific, statistical, and engineering principles. The discipline is also meant for cross-functionality and bridges the gap between theoretical science and practical engineering with emphasis in research and development, design, and analysis.

It is notable that in many languages the term for "engineering physics" would be directly translated into English as "technical physics". In some countries, both what would be translated as "engineering physics" and what would be translated as "technical physics" are disciplines leading to academic degrees, with the former specializing in nuclear power research, and the latter closer to engineering physics.[4] In some institutions, an engineering (or applied) physics major is a discipline or specialization within the scope of engineering science, or applied science.[5][6][7]

In many universities, engineering science programs may be offered at the levels of B.Tech, B.Sc., M.Sc. and Ph.D. Usually, a core of basic and advanced courses in mathematics, physics, chemistry, and biology forms the foundation of the curriculum, while typical elective areas may include fluid dynamics, quantum physics, economics, plasma physics, relativity, solid mechanics, operations research, quantitative finance, information technology and engineering, dynamical systems, bioengineering, environmental engineering, computational engineering, engineering mathematics and statistics, solid-state devices, materials science, electromagnetism, nanoscience, nanotechnology, energy, and optics. While typical undergraduate engineering programs generally focus on the application of established methods to the design and analysis of engineering solutions, undergraduate program in engineering science focuses on the creation and use of more advanced experimental or computational techniques where standard approaches are inadequate (i.e., development of engineering solutions to contemporary problems in the physical and life sciences by applying fundamental principles).


Qualified Engineering Physicists, with a degree in Engineering Physics, can work professionally as Engineers and/or Physicists in the high technology industries and beyond, becoming domain experts in multiple engineering and scientific fields.[8][9][10]


See alsoEdit

Notes and referencesEdit

  1. ^ "Introduction" (online). Princeton University. Retrieved June 26, 2011.
  2. ^ Khare, P.; A. Swarup (2009-01-26). Engineering Physics: Fundamentals & Modern Applications (13th ed.). Jones & Bartlett Learning. pp. xiii–Preface. ISBN 978-0-7637-7374-8.
  3. ^ Engineering Physics (online). Retrieved June 26, 2011.
  4. ^ "2002 Applications for graduate study open in Shanghai Research Institute of Technical Physics (上海技术物理研究所2002年招生)". Chinese Academy of Sciences (中国科学院). 2001-10-07. Archived from the original on 2008-06-07. Retrieved 2008-09-16.
  5. ^ Division of Engineering and Applied Science, California Institute of Technology
  6. ^ Engineering Physics, Division of Engineering Science, University of Toronto
  7. ^ Engineering Science and Mechanics program at Virginia Tech
  8. ^ Stephen F. Austin State University, Engineering Physics Careers
  9. ^ Engineering Physics Careers, Carleton University, Canada
  10. ^, Engineering Physics Careers overview
  11. ^ a b Engineering Physics, University of Michigan
  12. ^ Engineering Physics (Acoustics), University of Kettering
  13. ^ a b c d e f g h i Engineering Physics Curriculum, University of Illinois at Urbana–Champaign
  14. ^ Engineering Physics (Aerospace Systems), University of Kansas
  15. ^ Engineering Physics (Aerodynamics), University of Kansas
  16. ^ Gravitational Shielding Effect in Gauge Theory of Gravity, Institute of Physics
  17. ^ Honda’s Gravity Modification Research, Huffington Post
  18. ^ Physicists Teach AI to Identify Exotic States of Matter
  19. ^ Physicists Unleash AI to Devise Unthinkable Experiments
  20. ^ Engineering Physics (Biophysics), Cornell University
  21. ^ Engineering Physics, Chemical Systems, University of Kansas
  22. ^ a b Engineering Physics, Berkeley
  23. ^ a b Engineering Physics (Microelectronics), University of Connecticut
  24. ^ Universities offering Cryogenics and Superconductivity education in the United States, Cryogenic society of America
  25. ^ Golden Eye-style energy beam is developed by Nato scientists, Daily Telegraph
  26. ^ Johns Hopkins, Applied Physics Laboratory
  27. ^ Engineering Physics (Embedded Systems), Simon Fraser University
  28. ^ a b University of the Pacific, Engineering Physics, Curriculum
  29. ^ Engineering Physics (Nuclear Engineering), Ohio State University
  30. ^ Program of Engineering physics, Laval University, Quebec
  31. ^ Physicists applying knowledge to finance, The Guardian
  32. ^ China’s quantum satellite achieves ‘spooky action’ at record distance, Science Magazine
  33. ^ Physicists extend quantum machine learning to infinite dimensions,
  34. ^ Engineering Physics, Embry-Riddle Aeronautical University, Programme Options
  35. ^ Engineering Physics, Stanford

External linksEdit