Cytokinin

Cytokinins (CK) are a class of plant hormones that promote cell division, or cytokinesis, in plant roots and shoots. They are involved primarily in cell growth and differentiation, but also affect apical dominance, axillary bud growth, and leaf senescence. Folke Skoog discovered their effects using coconut milk in the 1940s at the University of Wisconsin–Madison.[1]

The cytokinin zeatin is named after the genus of corn, Zea.

There are two types of cytokinins: adenine-type cytokinins represented by kinetin, zeatin, and 6-benzylaminopurine, and phenylurea-type cytokinins like diphenylurea and thidiazuron (TDZ).[2] Most adenine-type cytokinins are synthesized in roots.[3] Cambium and other actively dividing tissues also synthesize cytokinins.[4] No phenylurea cytokinins have been found in plants.[5] Cytokinins participate in local and long-distance signalling, with the same transport mechanism as purines and nucleosides.[6] Typically, cytokinins are transported in the xylem.[3]

Cytokinins act in concert with auxin, another plant growth hormone. The two are complementary,[7][8] having generally opposite effects.[3]

FunctionEdit

Cytokinins are involved in many plant processes, including cell division and shoot and root morphogenesis. They are known to regulate axillary bud growth and apical dominance. According to the "direct inhibition hypothesis", these effects result from the ratio of cytokinin to auxin.[citation needed] This theory states that auxin from apical buds travels down shoots to inhibit axillary bud growth. This promotes shoot growth, and restricts lateral branching. Cytokinin moves from the roots into the shoots, eventually signaling lateral bud growth. Simple experiments support this theory. When the apical bud is removed, the axillary buds are uninhibited, lateral growth increases, and plants become bushier. Applying auxin to the cut stem again inhibits lateral dominance.[3] Moreover, it has been shown that cytokinin alone has no effect on parenchyma cells. When cultured with auxin but no cytokinin, they grow large but do not divide. When cytokinin and auxin are both added together, the cells expand and differentiate. When cytokinin and auxin are present in equal levels, the parenchyma cells form an undifferentiated callus. A higher ratio of cytokinin induces growth of shoot buds, while a higher ratio of auxin auxin induces root formation.[3]

Cytokinins have been shown to slow aging of plant organs by preventing protein breakdown, activating protein synthesis, and assembling nutrients from nearby tissues.[3] A study that regulated leaf senescence in tobacco leaves found that wild-type leaves yellowed while transgenic leaves remained mostly green. It was hypothesized that cytokinin may affect enzymes that regulate protein synthesis and degradation.[9]

Cytokinins have recently been found to play a role in plant pathogenesis. For example, cytokinins have been described to induce resistance against Pseudomonas syringae in Arabidopsis thaliana[10] and Nicotiana tabacum.[11] Also in context of biological control of plant diseases cytokinins seem to have potential functions. Production of cytokinins by Pseudomonas fluorescens G20-18 has been identified as a key determinant to efficiently control the infection of A. thaliana with P. syringae..[12]

While cytokinin action in vascular plants is described as pleiotropic, this class of plant hormones specifically induces the transition from apical growth to growth via a three-faced apical cell in moss protonema. This bud induction can be pinpointed to differentiation of a specific single cell, and thus is a very specific effect of cytokinin.[13]

Mode of actionEdit

Cytokinin signaling in plants is mediated by a two-component phosphorelay. This pathway is initiated by cytokinin binding to a histidine kinase receptor in the endoplasmic reticulum membrane. This results in the autophosphorylation of the receptor, with the phosphate then being transferred to a phosphotransfer protein. The phosphotransfer proteins can then phosphorylate the type-B response regulators (RR) which are a family of transcriptions factors. The phosphorylated, and thus activated, type-B RRs regulate the transcription of numerous genes, including the type-A RRs. The type-A RRs negatively regulate the pathway.[14]

BiosynthesisEdit

Adenosine phosphate-isopentenyltransferase (IPT) catalyses the first reaction in the biosynthesis of isoprene cytokinins. It may use ATP, ADP, or AMP as substrates and may use dimethylallyl pyrophosphate (DMAPP) or hydroxymethylbutenyl pyrophosphate (HMBPP) as prenyl donors.[15] This reaction is the rate-limiting step in cytokinin biosynthesis. DMADP and HMBDP used in cytokinin biosynthesis are produced by the methylerythritol phosphate pathway (MEP).[15]

Cytokinins can also be produced by recycled tRNAs in plants and bacteria.[15][16] tRNAs with anticodons that start with a uridine and carrying an already-prenylated adenosine adjacent to the anticodon release on degradation the adenosine as a cytokinin.[15] The prenylation of these adenines is carried out by tRNA-isopentenyltransferase.[16]

Auxin is known to regulate the biosynthesis of cytokinin.[17]

UsesEdit

Because cytokinins promote plant cell division and growth, they have been studied since the 1970s as potential agrochemicals, however they have yet to be widely adopted, probably due to the complex nature of their effects.[18] One study found that applying cytokinin to cotton seedlings led to a 5–10% increase in yield under drought conditions.[19] Some cytokinins are utilized in tissue culture of plants and can also be used to promote the germination of seeds.

ReferencesEdit

  1. ^ Kieber JJ (March 2002). "Tribute to Folke Skoog: Recent Advances in our Understanding of Cytokinin Biology". J. Plant Growth Regul. 21 (1): 1–2. doi:10.1007/s003440010059. PMID 11981613. S2CID 12690225.
  2. ^ Aina, O.; Quesenberry, K.; Gallo, M. (2012). "Thidiazuron-Induced Tissue Culture Regeneration from Quartered-Seed Explants of Arachis paraguariensis". Crop Science. 52 (3): 555. doi:10.2135/cropsci2011.07.0367 (inactive 31 May 2021).CS1 maint: DOI inactive as of May 2021 (link)
  3. ^ a b c d e f Campbell, Neil A.; Reece, Jane B.; Urry, Lisa Andrea.; Cain, Michael L.; Wasserman, Steven Alexander.; Minorsky, Peter V.; Jackson, Robert Bradley (2008). Biology (8th ed.). San Francisco: Pearson, Benjamin Cummings. pp. 827–30.
  4. ^ Chen CM, Ertl JR, Leisner SM, Chang CC (July 1985). "Localization of cytokinin biosynthetic sites in pea plants and carrot roots". Plant Physiol. 78 (3): 510–3. doi:10.1104/pp.78.3.510. PMC 1064767. PMID 16664274.
  5. ^ Mok DW, Mok MC (June 2001). "Cytokinin Metabolism and Action". Annu. Rev. Plant Physiol. Plant Mol. Biol. 52 (1): 89–118. doi:10.1146/annurev.arplant.52.1.89. PMID 11337393.
  6. ^ Sakakibara H (2006). "Cytokinins: activity, biosynthesis, and translocation". Annu Rev Plant Biol. 57 (1): 431–49. doi:10.1146/annurev.arplant.57.032905.105231. PMID 16669769. S2CID 25584314.
  7. ^ Schaller GE, Bishopp A, Kieber JJ (January 2015). "The yin‐yang of hormones: cytokinin and auxin interactions in plant development". Plant Cell. 27 (1): 44–63. doi:10.1105/tpc.114.133595. PMC 4330578. PMID 25604447.
  8. ^ Großkinsky DK, Petrášek J (February 2019). "Auxins and cytokinins – the dynamic duo of growth‐regulating phytohormones heading for new shores". New Phytol. 221 (3): 1187–1190. doi:10.1111/nph.15556. PMID 30644580.
  9. ^ Wingler A, Von Schaewen A, Leegood RC, Lea PJ, Quick WP (January 1998). "Regulation of Leaf Senescence by Cytokinin, Sugars, and Light". Plant Physiol. 116 (1): 329–335. doi:10.1104/pp.116.1.329. PMC 35173.
  10. ^ Choi J, Huh SU, Kojima M, Sakakibara H, Paek KH, Hwang I (August 2010). "The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in arabidopsis". Developmental Cell. 19 (2): 284–295. doi:10.1016/j.devcel.2010.07.011. PMID 20708590.
  11. ^ Großkinsky DK, Naseem M, Abdelmohsen UR, Plickert N, Engelke T, Griebel T, Zeier J, Novák O, Strnad M, Pfeifhofer H, van der Graaff E, Simon U, Roitsch T (October 2011). "Cytokinins mediate resistance against Pseudomonas syringae in tobacco through increased antimicrobial phytoalexin synthesis independent of salicylic acid signaling". Plant Physiology. 157 (2): 815–830. doi:10.1104/pp.111.182931. PMC 3192561. PMID 21813654.
  12. ^ Großkinsky DK, Tafner R, Moreno MV, Stenglein SA, García de Salamone IE, Nelson LM, Novák O, Strnad M, van der Graaff E, Roitsch T (2016). "Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis". Scientific Reports. 6: 23310. Bibcode:2016NatSR...623310G. doi:10.1038/srep23310. PMC 4794740. PMID 26984671.
  13. ^ Decker EL, Frank W, Sarnighausen E, Reski R (May 2006). "Moss systems biology en route: phytohormones in Physcomitrella development". Plant Biol (Stuttg). 8 (3): 397–405. CiteSeerX 10.1.1.319.9790. doi:10.1055/s-2006-923952. PMID 16807833.
  14. ^ Hutchison, Claire E.; Kieber, Joseph J. (2002-01-01). "Cytokinin Signaling in Arabidopsis". The Plant Cell. 14 (Suppl): s47–s59. doi:10.1105/tpc.010444. ISSN 1040-4651. PMC 151247. PMID 12045269.
  15. ^ a b c d Hwang I, Sakakibara H (2006). "Cytokinin biosynthesis and perception". Physiologia Plantarum. 126 (4): 528–538. doi:10.1111/j.1399-3054.2006.00665.x.
  16. ^ a b Miyawaki K, Matsumoto-Kitano M, Kakimoto T (January 2004). "Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate". Plant J. 37 (1): 128–38. doi:10.1046/j.1365-313x.2003.01945.x. PMID 14675438.
  17. ^ Nordström A, Tarkowski P, Tarkowska D, et al. (May 2004). "Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin-regulated development". Proc. Natl. Acad. Sci. U.S.A. 101 (21): 8039–44. Bibcode:2004PNAS..101.8039N. doi:10.1073/pnas.0402504101. PMC 419553. PMID 15146070.
  18. ^ Koprna, Radoslav; De Diego, Nuria; Dundálková, Lucie; Spíchal, Lukáš (2016-02-01). "Use of cytokinins as agrochemicals". Bioorganic & Medicinal Chemistry. Recent Developments in Agrochemistry. 24 (3): 484–492. doi:10.1016/j.bmc.2015.12.022. ISSN 0968-0896. PMID 26719210. Retrieved 2021-06-27.
  19. ^ Yao S (March 2010). "Plant Hormone Increases Cotton Yields in Drought Conditions". News & Events. Agricultural Research Service (ARS), U.S. Department of Agriculture.

External linksEdit