Open main menu

Artificial enzyme

Schematic drawing of artificial phosphorylase

An artificial enzyme is a synthetic, organic molecule or ion that recreate some function of an enzyme. The area promises to deliver catalysis at rates and selectivity observed in many enzymes.

HistoryEdit

Enzyme catalysis of chemical reactions occur with high selectivity and rate. The substrate is activated in a small part of the enzyme's macromolecule called the active site. There, the binding of a substrate close to functional groups in the enzyme causes catalysis by so-called proximity effects. It is possible to create similar catalysts from small molecule by combining substrate-binding with catalytic functional groups. Classically artificial enzymes bind substrates using receptors such as cyclodextrin, crown ethers, and calixarene.[1][2]

Artificial enzymes based on amino acids or peptides as characteristic molecular moieties have expanded the field of artificial enzymes or enzyme mimics. For instance, scaffolded histidine residues mimics certain metalloproteins and -enzymes such as hemocyanin, tyrosinase, and catechol oxidase).[3]

Artificial enzymes have been designed from scratch via a computational strategy using Rosetta.[4] In December 2014, it was announced that active enzymes had been produced that were made from artificial molecules which do not occur anywhere in nature.[5] In 2017, a book chapter entitled "Artificial Enzymes: The Next Wave" was published.[6]

NanozymesEdit

Nanozymes are nanomaterials with enzyme-like characteristics.[7][8] They have been widely explored for various applications, such as biosensing, bioimaging, tumor diagnosis and therapy, antibiofouling.[9][10][11][12][13]

1990sEdit

In 1996 and 1997, Dugan et al. discovered the superoxide dismutase (SOD) mimicking activities of fullerene derivatives.[14][15]

2000sEdit

A "short review" article appeared in 2005.[16] It attributed the term "nanozyme"s to "analogy with the activity of catalytic polymers (synzymes)", based on the "outstanding catalytic efficiency of some of the functional nanoparticles synthesized". The term was coined the previous year by Flavio Manea, Florence Bodar Houillon, Lucia Pasquato, and Paolo Scrimin.[17] In 2006, nanoceria (i.e., CeO2 nanoparticles) was reported as observed, in rat experiments, preventing retinal degeneration induced by intracellular peroxides (toxic reactive oxygen intermediates).[18] This was seen as indicating a possible route to an eventual treatment for causes of blindness.[19] In 2007 intrinsic peroxidase-like activity of ferromagnetic nanoparticles was reported as suggesting a wide range of applications in, for example, medicine and environmental chemistry, and the authors reported an immunoassay based on this property.[20][21] Hui Wei and Erkang Wang then (2008) used this mimetic property of easily-prepared magnetic nanoparticles (MNP) to demonstrate analytical applications to bioactive molecules, describing a colorimetric assay for hydrogen peroxide (H
2
O
2
) and a sensitive and selective platform for glucose detection.[22]


2010sEdit

As of 2016 review articles are appearing every year, in a range of journals.[23][24][25][26][27][28][29][30][31][32][33][34][35] A book-length treatment appeared in 2015, described as providing "a broad portrait of nanozymes in the context of artificial enzyme research",[36] and a 2016 Chinese book on "Enzyme Engineering" included a chapter on "Nanozymes".[37]

Colorimetric applications of peroxidase mimesis in different preparations were reported in 2010 and 2011, detecting, respectively, glucose (via carboxyl‐modified graphene oxide)[38] and single-nucleotide polymorphisms (via hemin−graphene hybrid nanosheets, and without labelling),[39] with advantages in both cases of cost and convenience. A use of colour to visualise tumour tissues was reported in 2012, using the peroxidase mimesis of MNP coated with a protein which recognises cancer cells and binds to them.[40]

Also in 2012, nanowires of vanadium pentoxide (vanadia, V2O5) were shown to suppress marine biofouling by mimicry of vanadium haloperoxidase, with anticipated ecological benefits.[41] A study at a different centre two years later reported V2O5 showing mimicry of glutathione peroxidase, in in-vitro mammalian cells, suggesting future therapeutic application.[42] The same year, 2014, it was reported that a carboxylated fullerene (C3) was neuroprotective post-injury in an in-vivo primate model of Parkinson’s disease.[43]

In 2015, a supramolecular nanodevice was proposed for bioorthogonal regulation of a transitional-metal nanozyme, based on encapsulating the nanozyme in a monolayer of hydrophilic gold nanoparticles, alternatively isolating it from the cytoplasm or allowing access, according to a gatekeeping receptor molecule controlled by competing guest species; the device is of biomimetic size and was reported as successful within the living cell, controlling pro-fluorophore and prodrug activation processes: it was suggested for imaging and therapeutic applications.[44][45] A facile process for producing Cu(OH)
2
supercages was reported, and a demonstration of their intrinsic peroxidase-mimicry.[46] A scaffolded "INAzyme" ("integrated nanozyme") arrangement was described, locating hemin (a peroxidase mimic) with glucose oxidase (GOx) in sub-micron proximity, providing a fast and efficient enzyme cascade reported as monitoring cerebral brain-cell glucose dynamically in vivo.[47][48] A method of ionising hydrophobe-stabilised colloid nanoparticles was described, with confirmation of their enzyme mimicry in aqueous dispersion.[49]

Field trials were announced of an MNP-amplified rapid low-cost strip test for Ebola virus, in West Africa.[50][51] H
2
O
2
was reported as displacing label DNA, adsorbed to nanoceria, into solution, where it fluoresces, providing a highly sensitive glucose test.[52] Oxidase-like nanoceria has been used for developing self-regulated bioassays.[53] Multi-enzyme mimicking Prussian blue was developed for therapeutics.[54] Histidine was used to modulate iron oxide nanoparticles' peroxidase mimicking activities.[55] Gold nanoparticles' peroxidase mimicking activities were modulated via a supramolecular strategy for cascade reactions.[56] A molecular imprinting strategy was developed to improve the selectivity of Fe3O4 nanozymes with peroxidase-like activity.[57] A new strategy was developed to enhance the peroxidase mimicking activity of gold nanoparticles by using hot electrons.[58] Researchers have designed gold nanoparticles (AuNPs) based integrative nanozymes with both SERS and peroxidase mimicking activities for measuring glucose and lactate in living tissues.[59] Cytochrome c oxidase mimicking activity of Cu2O nanoparticles was modulated by receiving electrons from cytochrome c.[60] Fe3O4 NPs were combined with glucose oxidase for tumor therapeutics.[61] Manganese dioxide nanozymes have been used as cytoprotective shells.[62] Mn3O4 Nanozyme for Parkinson's Disease (cellular model) was reported.[63] Heparin elimination in live rats has been monitored with 2D MOF based peroxidase mimics and AG73 peptide.[64] Glucose oxidase and iron oxide nanozymes were encapsulated within multi-compartmental hydrogels for incompatible tandem reactions.[65] A cascade nanozyme biosensor was developed for detection of viable Enterobacter sakazakii.[66] An integrated nanozyme of GOx@ZIF-8(NiPd) was developed for tandem catalysis.[67] Charge-switchable nanozymes were developed.[68] Site-selective RNA splicing nanozyme was developed.[69] A nanozymes special issue in Progress in Biochemistry and Biophysics was published.[70] Mn3O4 nanozymes with ROS scavenging activities have been developed for in vivo anti-inflammation.[71] A concept entitled "A Step into the Future – Applications of Nanoparticle Enzyme Mimics" was proposed.[72] Facet-dependent oxidase and peroxidase-like activities of Pd nanoparticles were reported.[73] Au@Pt multibranched nanostructures as bifunctional nanozymes were developed.[74] Ferritin coated carbon nanozymes were developed for tumor catalytic therapy.[75] CuO nanozymes were developed to kill bacteria via a light-controlled manner.[76] Enzymatic activity of oxygenated CNT was studied.[77] Nanozymes were used to catalyze the oxidation of l-Tyrosine and l-Phenylalanine to dopachrome.[78] Nanozyme as an emerging alternative to natural enzyme for biosensing and immunoassay was summarized.[79] Standardized assay was proposed for peroxidase-like nanozymes.[80] Semiconductor QDs as nucleases for site-selective photoinduced cleavage of DNA.[81] 2D-MOF nanozyme-based sensor arrays was constructed for detecting phosphates and probing their enzymatic hydrolysis.[82] N-doped carbon nanomaterials as specific peroxidase mimics were reported.[83] Nanozyme sensor arrays were developed to detect analytes from small Molecules to proteins and cells.[84] Copper oxide nanozyme for Parkinson’s Disease was reported.[85] Exosome-like nanozyme vesicles for tumor Imaging was developed.[86] A comprehensive review on nanozymes was published by Chemical Society Reviews.[8] A progress report on nanozymes was published.[87] eg occupancy as an effective descriptor was developed for the catalytic activity of perovskite oxide-based peroxidase mimics.[88] A Chemical Reviews on nanozymes was published.[89] A single-atom strategy was used for developing nanozymes.[90][91][92][93] Nanozyme for metal-free bioinspired cascade photocatalysis was reported.[94] A tutorial review on nanozymes was published by Chemical Society Reviews.[95] Cascade nanozyme reactions to convert CO2 into valuable resources was reported.[96] Renal clearable peroxidase-like gold nanoclusters were used for in vivo disease monitoring.[97] Copper/Carbon hybrid nanozyme was developed for antibacterial therapy.[98] A ferritin nanozyme was developed to treat cerebral malaria.[99] A review on nanozymes was published in Acc. Chem. Res.[100]

See alsoEdit

ReferencesEdit

  1. ^ "Wiley: Artificial Enzymes - Ronald Breslow". as.wiley.com. Retrieved 2015-12-11.
  2. ^ Kirby, Anthony J; Hollfelder, Florian (2009-10-01). From Enzyme Models to Model Enzymes. doi:10.1039/9781847559784. ISBN 9780854041756.
  3. ^ Scaffolded amino acids as a close structural mimic of type-3 copper binding sites. H. Bauke Albada, Fouad Soulimani, Bert M. Weckhuysen and Rob M. J. Liskamp, Chem. Commun., 2007, pages 4895-4897, doi:10.1039/B709400K
  4. ^ Röthlisberger, Daniela; Khersonsky, Olga; Wollacott, Andrew M.; Jiang, Lin; DeChancie, Jason; Betker, Jamie; Gallaher, Jasmine L.; Althoff, Eric A.; Zanghellini, Alexandre (2008-05-08). "Kemp elimination catalysts by computational enzyme design". Nature. 453 (7192): 190–195. Bibcode:2008Natur.453..190R. doi:10.1038/nature06879. ISSN 0028-0836. PMID 18354394.
  5. ^ "World's first artificial enzymes created using synthetic biology". University of Cambridge. 1 December 2014. Retrieved 14 December 2016.
  6. ^ Encyclopedia of Physical Organic Chemistry, 6 Volume Set | Physical Organic Chemistry | Organic Chemistry | Chemistry | Subjects | Wiley
  7. ^ Wei, Hui; Wang, Erkang (2013-06-21). "Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes". Chemical Society Reviews. 42 (14): 6060–93. doi:10.1039/C3CS35486E. ISSN 1460-4744. PMID 23740388.
  8. ^ a b Wei, Hui; Qin, Li; Zhu, Yunyao; Li, Sirong; Lou, Zhangping; Wang, Quan; Wang, Xiaoyu; Wu, Jiangjiexing (2018-12-11). "Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II)". Chemical Society Reviews. 48 (4): 1004–1076. doi:10.1039/C8CS00457A. ISSN 1460-4744. PMID 30534770.
  9. ^ 阎锡蕴 (2014). 纳米材料新特性及生物医学应用 (第1版 ed.). 北京: 科学出版社. ISBN 9787030418289.
  10. ^ Wang, Zerong (2017-04-17). Encyclopedia of Physical Organic Chemistry, 5 Volume Set (Edición: Volumes 1 - 5. ed.). Place of publication not identified: John Wiley & Sons Inc. ISBN 9781118470459.
  11. ^ "Nanozyme brief history".
  12. ^ Wang, Xiaoyu; Hu, Yihui; Wei, Hui (2016). "Nanozymes in bionanotechnology: from sensing to therapeutics and beyond". Inorg. Chem. Front. 3 (1): 41–60. doi:10.1039/c5qi00240k.
  13. ^ Duan, Demin; Fan, Kelong; Zhang, Dexi; Tan, Shuguang; Liang, Mifang; Liu, Yang; Zhang, Jianlin; Zhang, Panhe; Liu, Wei (2015). "Nanozyme-strip for rapid local diagnosis of Ebola". Biosensors and Bioelectronics. 74: 134–141. doi:10.1016/j.bios.2015.05.025. PMID 26134291.
  14. ^ Dugan, Laura L.; Gabrielsen, Joseph K.; Yu, Shan P.; Lin, Tien-Sung; Choi, Dennis W. (1996-04-01). "Buckminsterfullerenol Free Radical Scavengers Reduce Excitotoxic and Apoptotic Death of Cultured Cortical Neurons". Neurobiology of Disease. 3 (2): 129–135. doi:10.1006/nbdi.1996.0013. PMID 9173920.
  15. ^ Dugan, Laura L.; Turetsky, Dorothy M.; Du, Cheng; Lobner, Doug; Wheeler, Mark; Almli, C. Robert; Shen, Clifton K.-F.; Luh, Tien-Yau; Choi, Dennis W. (1997-08-19). "Carboxyfullerenes as neuroprotective agents". Proceedings of the National Academy of Sciences. 94 (17): 9434–9439. Bibcode:1997PNAS...94.9434D. doi:10.1073/pnas.94.17.9434. ISSN 0027-8424. PMC 23208. PMID 9256500.
  16. ^ Lucia Pasquato, Paolo Pengo, Paolo Scrimin, Nanozymes: Functional Nanoparticle-based Catalysts, Supramol. Chem., 2005, 17, 163–171. [1]
  17. ^ Manea, Flavio; Houillon, Florence Bodar; Pasquato, Lucia; Scrimin, Paolo (2004-11-19). "Nanozymes: Gold-Nanoparticle-Based Transphosphorylation Catalysts". Angewandte Chemie International Edition. 43 (45): 6165–6169. doi:10.1002/anie.200460649. ISSN 1521-3773. PMID 15549744.
  18. ^ Chen, Junping; Patil, Swanand; Seal, Sudipta; McGinnis, James F. (2006-11-01). "Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides". Nature Nanotechnology. 1 (2): 142–150. Bibcode:2006NatNa...1..142C. doi:10.1038/nnano.2006.91. ISSN 1748-3387. PMID 18654167.
  19. ^ Silva, Gabriel A. (2006-11-01). "Nanomedicine: Seeing the benefits of ceria". Nature Nanotechnology. 1 (2): 92–94. Bibcode:2006NatNa...1...92S. doi:10.1038/nnano.2006.111. ISSN 1748-3387. PMID 18654154.
  20. ^ Gao, Lizeng; Zhuang, Jie; Nie, Leng; Zhang, Jinbin; Zhang, Yu; Gu, Ning; Wang, Taihong; Feng, Jing; Yang, Dongling (2007-09-01). "Intrinsic peroxidase-like activity of ferromagnetic nanoparticles". Nature Nanotechnology. 2 (9): 577–583. Bibcode:2007NatNa...2..577G. doi:10.1038/nnano.2007.260. ISSN 1748-3387. PMID 18654371.
  21. ^ Perez, J. Manuel (2007-09-01). "Iron oxide nanoparticles: Hidden talent". Nature Nanotechnology. 2 (9): 535–536. Bibcode:2007NatNa...2..535P. doi:10.1038/nnano.2007.282. ISSN 1748-3387. PMID 18654361.
  22. ^ Wei, Hui; Wang, Erkang (2008-03-15). "Fe3O4 Magnetic Nanoparticles as Peroxidase Mimetics and Their Applications in H2O2 and Glucose Detection". Analytical Chemistry. 80 (6): 2250–2254. doi:10.1021/ac702203f. ISSN 0003-2700. PMID 18290671.
  23. ^ Ajay Karakoti, Sanjay Singh, Janet M. Dowding, Sudipta Seal, William T. Self, Redox-active radical scavenging nanomaterials, Chem. Soc. Rev., 2010, 39, 4422–4432. [2]
  24. ^ Jianxin Xie, Xiaodan Zhang, Hui Wang, Huzhi Zheng, Yuming Huang, Analytical and environmental applications of nanoparticles as enzyme mimetics, TrAC, Trends Anal. Chem., 2012, 39, 114–129. [3]
  25. ^ Hui Wei, Erkang Wang, Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes, Chem. Soc. Rev., 2013, 42, 6060–6093. [4]
  26. ^ Lizeng Gao, Xiyun Yan, Discovery and current application of nanozyme, Prog. Biochem. Biophys., 2013, 40, 892–902. [5]
  27. ^ Weiwei He,Wayne Wamer, Qingsu Xia, Jun-jie Yin, Peter P. Fu, Enzyme-Like Activity of Nanomaterials, J. Environ. Sci. Health Environ. Part C: Environ Carcinog. Ecotoxicol. Rev., 2014, 32, 186–211. [6]
  28. ^ Youhui Lin, Jinsong Ren, Xiaogang Qu, Nano-Gold as Artificial Enzymes: Hidden Talents, Adv. Mater., 2014, 26, 4200–4217. [7]
  29. ^ Youhui Lin, Jinsong Ren, Xiaogang Qu, Catalytically Active Nanomaterials: A Promising Candidate for Artificial Enzymes, Acc. Chem. Res., 2014, 47, 1097–1105. [8]
  30. ^ Leonard J. Prins, Emergence of Complex Chemistry on an Organic Monolayer, Acc. Chem. Res., 2015, 48, 1920–1928. [9]
  31. ^ Li Zheng, Jinhang Zhao, Xiaofang Niu,Yunhui Yang, Nanomaterial-based peroxidase enzyme mimics with applications to colorimetric analysis and electrochemical sensor, Mater. Rev., 2015, 29, 115–120. [10]
  32. ^ Xiaoyu Wang, Yihui Hu, Hui Wei, Nanozymes in bionanotechnology: from sensing to therapeutics and beyond, Inorg. Chem. Front., 2016, 3, 41–60. [11]
  33. ^ Lizeng Gao, Xiyun Yan, Nanozymes: an emerging field bridging nanotechnology and biology, Science China: Life Sciences, 2016, 59, 400–402. [12]
  34. ^ Ruben Ragg, Muhammad N. Tahir, Wolfgang Tremel, Solids Go Bio: Inorganic Nanoparticles as Enzyme Mimics, Euro. J. Inorg. Chem., 2016, 2016, 1906–1915. [13]
  35. ^ Evelyn Kuah, Seraphina Toh, Jessica Yee, Qian Ma, Zhiqiang Gao, Enzyme Mimics: Advances and Applications, Chem. Eur. J., 2016, 22, 8404–8430. [14]
  36. ^ Nanozymes: Next Wave of Artificial Enzymes | Xiaoyu Wang | Springer. SpringerBriefs in Molecular Science. Springer. 2016. ISBN 9783662530665.
  37. ^ 李正强, 副 罗贵民 主编 高仁钧 (2016-05-01). 酶工程(第3版) (第3版 ed.). 化学工业出版社. ISBN 978-7122257604.
  38. ^ Song, Yujun; Qu, Konggang; Zhao, Chao; Ren, Jinsong; Qu, Xiaogang (2010-03-05). "Graphene Oxide: Intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection". Advanced Materials. 22 (19): 2206–2210. doi:10.1002/adma.200903783. ISSN 0935-9648. PMID 20564257.
  39. ^ Guo, Yujing; Deng, Liu; Li, Jing; Guo, Shaojun; Wang, Erkang; Dong, Shaojun (2011-01-10). "Hemin−Graphene Hybrid Nanosheets with Intrinsic Peroxidase-like Activity for Label-free Colorimetric Detection of Single-Nucleotide Polymorphism". ACS Nano. 5 (2): 1282–1290. doi:10.1021/nn1029586. ISSN 1936-0851. PMID 21218851.
  40. ^ Fan, Kelong; Cao, Changqian; Pan, Yongxin; Lu, Di; Yang, Dongling; Feng, Jing; Song, Lina; Liang, Minmin; Yan, Xiyun (2012-07-01). "Magnetoferritin nanoparticles for targeting and visualizing tumour tissues". Nature Nanotechnology. 7 (7): 459–464. Bibcode:2012NatNa...7..459F. doi:10.1038/nnano.2012.90. ISSN 1748-3387. PMID 22706697.
  41. ^ Natalio, Filipe; André, Rute; Hartog, Aloysius F.; Stoll, Brigitte; Jochum, Klaus Peter; Wever, Ron; Tremel, Wolfgang (2012-08-01). "Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation". Nature Nanotechnology. 7 (8): 530–535. Bibcode:2012NatNa...7..530N. doi:10.1038/nnano.2012.91. ISSN 1748-3387. PMID 22751222.
  42. ^ Vernekar, Amit A.; Sinha, Devanjan; Srivastava, Shubhi; Paramasivam, Prasath U.; D’Silva, Patrick; Mugesh, Govindasamy (2014-11-21). "An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires". Nature Communications. 5 (1): 5301. Bibcode:2014NatCo...5E5301V. doi:10.1038/ncomms6301. ISSN 2041-1723. PMID 25412933.
  43. ^ Dugan, Laura L.; Tian, LinLin; Quick, Kevin L.; Hardt, Josh I.; Karimi, Morvarid; Brown, Chris; Loftin, Susan; Flores, Hugh; Moerlein, Stephen M. (2014-09-01). "Carboxyfullerene neuroprotection postinjury in Parkinsonian nonhuman primates". Annals of Neurology. 76 (3): 393–402. doi:10.1002/ana.24220. ISSN 1531-8249. PMC 4165715. PMID 25043598.
  44. ^ Tonga, Gulen Yesilbag; Jeong, Youngdo; Duncan, Bradley; Mizuhara, Tsukasa; Mout, Rubul; Das, Riddha; Kim, Sung Tae; Yeh, Yi-Cheun; Yan, Bo (2015-07-01). "Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts". Nature Chemistry. 7 (7): 597–603. Bibcode:2015NatCh...7..597T. doi:10.1038/nchem.2284. ISSN 1755-4330. PMC 5697749. PMID 26100809.
  45. ^ Unciti-Broceta, Asier (2015-07-01). "Bioorthogonal catalysis: Rise of the nanobots". Nature Chemistry. 7 (7): 538–539. Bibcode:2015NatCh...7..538U. doi:10.1038/nchem.2291. ISSN 1755-4330. PMID 26100798.
  46. ^ Cai, Ren; Yang, Dan; Peng, Shengjie; Chen, Xigao; Huang, Yun; Liu, Yuan; Hou, Weijia; Yang, Shengyuan; Liu, Zhenbao (2015-11-04). "Single Nanoparticle to 3D Supercage: Framing for an Artificial Enzyme System". Journal of the American Chemical Society. 137 (43): 13957–13963. doi:10.1021/jacs.5b09337. ISSN 0002-7863. PMC 4927331. PMID 26464081.
  47. ^ Cheng, Hanjun; Zhang, Lei; He, Jian; Guo, Wenjing; Zhou, Zhengyang; Zhang, Xuejin; Nie, Shuming; Wei, Hui (2016-04-12). "Integrated nanozymes with nanoscale proximity for in vivo neurochemical monitoring in living brains". Analytical Chemistry. 88 (10): 5489–5497. doi:10.1021/acs.analchem.6b00975. ISSN 0003-2700. PMID 27067749.
  48. ^ "Integrated nanozymes for brain chemistry". phys.org. Retrieved 2016-04-17.
  49. ^ Liu, Yuan; Purich, Daniel L.; Wu, Cuichen; Wu, Yuan; Chen, Tao; Cui, Cheng; Zhang, Liqin; Cansiz, Sena; Hou, Weijia (2015-12-02). "Ionic Functionalization of Hydrophobic Colloidal Nanoparticles To Form Ionic Nanoparticles with Enzymelike Properties". Journal of the American Chemical Society. 137 (47): 14952–14958. doi:10.1021/jacs.5b08533. ISSN 0002-7863. PMC 4898269. PMID 26562739.
  50. ^ Elsevier. "New Ebola test to make diagnosis easier, faster and cheaper". www.elsevier.com. Retrieved 2016-06-10.
  51. ^ Duan, Demin; Fan, Kelong; Zhang, Dexi; Tan, Shuguang; Liang, Mifang; Liu, Yang; Zhang, Jianlin; Zhang, Panhe; Liu, Wei (2015-12-15). "Nanozyme-strip for rapid local diagnosis of Ebola". Biosensors and Bioelectronics. 74: 134–141. doi:10.1016/j.bios.2015.05.025. PMID 26134291.
  52. ^ Liu, Biwu; Sun, Ziyi; Huang, Po-Jung Jimmy; Liu, Juewen (2015-01-28). "Hydrogen Peroxide Displacing DNA from Nanoceria: Mechanism and Detection of Glucose in Serum". Journal of the American Chemical Society. 137 (3): 1290–1295. doi:10.1021/ja511444e. ISSN 0002-7863. PMID 25574932.
  53. ^ Cheng, Hanjun; Lin, Shichao; Muhammad, Faheem; Lin, Ying-Wu; Wei, Hui (2016-10-25). "Rationally modulate the oxidase-like activity of nanoceria for self-regulated bioassays". ACS Sensors. 1 (11): 1336–1343. doi:10.1021/acssensors.6b00500.
  54. ^ Zhang, Wei; Hu, Sunling; Yin, Jun-Jie; He, Weiwei; Lu, Wei; Ma, Ming; Gu, Ning; Zhang, Yu (2016-03-09). "Prussian Blue Nanoparticles as Multienzyme Mimetics and Reactive Oxygen Species Scavengers". Journal of the American Chemical Society. 138 (18): 5860–5865. doi:10.1021/jacs.5b12070. ISSN 0002-7863. PMID 26918394.
  55. ^ Fan, Kelong; Wang, Hui; Xi, Juqun; Liu, Qi; Meng, Xiangqin; Duan, Demin; Gao, Lizeng; Yan, Xiyun (2016-12-22). "Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site". Chemical Communications. 53 (2): 424–427. doi:10.1039/C6CC08542C. ISSN 1364-548X. PMID 27959363.
  56. ^ Zhao, Yan; Zhu, Hui; Zhu, Qingqing; Huang, Yucheng; Xia, Yunsheng (2016-12-07). "Three-in-One: Sensing, Self-Assembly and Cascade Catalysis of Cyclodextrin Modified Gold Nanoparticles". Journal of the American Chemical Society. 138 (51): 16645–16654. doi:10.1021/jacs.6b07590. ISSN 0002-7863. PMID 27983807.
  57. ^ Zhang, Zijie; Zhang, Xiaohan; Liu, Biwu; Liu, Juewen (2017-03-27). "Molecular Imprinting on Inorganic Nanozymes for Hundred-fold Enzyme Specificity". Journal of the American Chemical Society. 139 (15): 5412–5419. doi:10.1021/jacs.7b00601. ISSN 0002-7863. PMID 28345903.
  58. ^ Wang, Chen; Shi, Yi; Dan, Yuan-Yuan; Nie, Xing-Guo; Li, Jian; Xia, Xing-Hua (2017). "Enhanced Peroxidase-Like Performance of Gold Nanoparticles by Hot Electrons". Chemistry - A European Journal. 23 (28): 6717–6723. doi:10.1002/chem.201605380. ISSN 0947-6539. PMID 28217846.
  59. ^ Hu, Yihui; Cheng, Hanjun; Zhao, Xiaozhi; Wu, Jiangjiexing; Muhammad, Faheem; Lin, Shichao; He, Jian; Zhou, Liqi; Zhang, Chengping (2017-06-27). "Surface-Enhanced Raman Scattering Active Gold Nanoparticles with Enzyme-Mimicking Activities for Measuring Glucose and Lactate in Living Tissues". ACS Nano. 11 (6): 5558–5566. doi:10.1021/acsnano.7b00905. ISSN 1936-0851. PMID 28549217.
  60. ^ Chen, Ming; Wang, Zhonghua; Shu, Jinxia; Jiang, Xiaohui; Wang, Wei; Shi, Zhen-Hua; Lin, Ying-Wu (2017-07-28). "Mimicking a Natural Enzyme System: Cytochrome c Oxidase-Like Activity of Cu2O Nanoparticles by Receiving Electrons from Cytochrome c". Inorganic Chemistry. 56 (16): 9400–9403. doi:10.1021/acs.inorgchem.7b01393. ISSN 0020-1669. PMID 28753305.
  61. ^ Huo, Minfeng; Wang, Liying; Chen, Yu; Shi, Jianlin (2017-08-25). "Tumor-selective catalytic nanomedicine by nanocatalyst delivery". Nature Communications. 8 (1): 357. Bibcode:2017NatCo...8..357H. doi:10.1038/s41467-017-00424-8. ISSN 2041-1723. PMC 5572465. PMID 28842577.
  62. ^ Li, Wei; Liu, Zhen; Liu, Chaoqun; Guan, Yijia; Ren, Jinsong; Qu, Xiaogang (2017). "Manganese Dioxide Nanozymes as Intelligent Cytoprotective Shells for Individual Living Cell Encapsulation". Angewandte Chemie International Edition. 56 (44): 13661–13665. doi:10.1002/anie.201706910. ISSN 1521-3773. PMID 28884490.
  63. ^ Mugesh, Govindasamy; Singh, Namrata; Savanur, Mohammed Azharuddin; Srivastava, Shubhi; D’Silva, Patrick (2017). "Redox Modulatory Mn3O4 Nanozyme with Multi-enzyme Activity Provides Efficient Cytoprotection to Human Cells in Parkinson's Disease Model". Angewandte Chemie International Edition. 56 (45): 14267–14271. doi:10.1002/anie.201708573. ISSN 1521-3773. PMID 28922532.
  64. ^ Cheng, Hanjun; Liu, Yufeng; Hu, Yihui; Ding, Yubin; Lin, Shichao; Cao, Wen; Wang, Qian; Wu, Jiangjiexing; Muhammad, Faheem (2017-10-10). "Monitoring of Heparin Activity in Live Rats Using Metal-Organic Framework Nanosheets as Peroxidase Mimics". Analytical Chemistry. 89 (21): 11552–11559. doi:10.1021/acs.analchem.7b02895. ISSN 0003-2700. PMID 28992698.
  65. ^ Tan, Hongliang; Guo, Song; Dinh, Ngoc-Duy; Luo, Rongcong; Jin, Lin; Chen, Chia-Hung (2017-09-22). "Heterogeneous multi-compartmental hydrogel particles as synthetic cells for incompatible tandem reactions". Nature Communications. 8 (1): 663. Bibcode:2017NatCo...8..663T. doi:10.1038/s41467-017-00757-4. ISSN 2041-1723. PMC 5610232. PMID 28939810.
  66. ^ Zhang, Li; Chen, Yuting; Cheng, Nan; Xu, Yuancong; Huang, Kunlun; Luo, Yunbo; Wang, Peixia; Duan, Demin; Xu, Wentao (2017). "Ultrasensitive Detection of Viable Enterobacter sakazakii by a Continual Cascade Nanozyme Biosensor". Analytical Chemistry. 89 (19): 10194–10200. doi:10.1021/acs.analchem.7b01266. PMID 28881135.
  67. ^ Wang, Qingqing; Zhang, Xueping; Huang, Liang; Zhang, Zhiquan; Dong, Shaojun (2017). "GOx@ZIF-8(NiPd) nanoflower: an artificial enzyme system for tandem catalysis". Angewandte Chemie International Edition. 56 (50): 16082–16085. doi:10.1002/anie.201710418. ISSN 1521-3773. PMID 29119659.
  68. ^ Gupta, Akash; Das, Riddha; Yesilbag Tonga, Gulen; Mizuhara, Tsukasa; Rotello, Vincent M. (2017-12-15). "Charge-Switchable Nanozymes for Bioorthogonal Imaging of Biofilm-Associated Infections". ACS Nano. 12 (1): 89–94. doi:10.1021/acsnano.7b07496. ISSN 1936-0851. PMC 5846330. PMID 29244484.
  69. ^ Petree, Jessica R.; Yehl, Kevin; Galior, Kornelia; Glazier, Roxanne; Deal, Brendan; Salaita, Khalid (2017-11-20). "Site-Selective RNA Splicing Nanozyme: DNAzyme and RtcB Conjugates on a Gold Nanoparticle". ACS Chemical Biology. 13 (1): 215–224. doi:10.1021/acschembio.7b00437. ISSN 1554-8929. PMC 6085866. PMID 29155548.
  70. ^ "An issue for nanozymes research". www.pibb.ac.cn. Retrieved 2018-02-06.
  71. ^ Yao, Jia; Cheng, Yuan; Zhou, Min; Zhao, Sheng; Lin, Shichao; Wang, Xiaoyu; Wu, Jiangjiexing; Li, Sirong; Wei, Hui (2018). "ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation". Chemical Science.
  72. ^ Tremel, Wolfgang; Korschelt, Karsten; Tahir, Muhammad Nawaz (2018). "A Step into the Future - Applications of Nanoparticle Enzyme Mimics". Chemistry – A European Journal. 24 (39): 9703–9713. doi:10.1002/chem.201800384. ISSN 1521-3765. PMID 29447433.
  73. ^ Fang, Ge; Li, Weifeng; Shen, Xiaomei; Perez-Aguilar, Jose Manuel; Chong, Yu; Gao, Xingfa; Chai, Zhifang; Chen, Chunying; Ge, Cuicui (2018-01-09). "Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria". Nature Communications. 9 (1): 129. Bibcode:2018NatCo...9..129F. doi:10.1038/s41467-017-02502-3. ISSN 2041-1723. PMC 5760645. PMID 29317632.
  74. ^ Wu, Jiangjiexing; Qin, Kang; Yuan, Dan; Tan, Jun; Qin, Li; Zhang, Xuejin; Wei, Hui (2018-03-26). "Rational Design of Au@Pt Multibranched Nanostructures as Bifunctional Nanozymes". ACS Applied Materials & Interfaces. 10 (15): 12954–12959. doi:10.1021/acsami.7b17945. ISSN 1944-8244. PMID 29577720.
  75. ^ Fan, Kelong; Xi, Juqun; Fan, Lei; Wang, Peixia; Zhu, Chunhua; Tang, Yan; Xu, Xiangdong; Liang, Minmin; Jiang, Bing (2018-04-12). "In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy". Nature Communications. 9 (1): 1440. Bibcode:2018NatCo...9.1440F. doi:10.1038/s41467-018-03903-8. ISSN 2041-1723. PMC 5897348. PMID 29650959.
  76. ^ Karim, Md. Nurul; Singh, Mandeep; Weerathunge, Pabudi; Bian, Pengju; Zheng, Rongkun; Dekiwadia, Chaitali; Ahmed, Taimur; Walia, Sumeet; Della Gaspera, Enrico (2018-03-06). "Visible-Light-Triggered Reactive-Oxygen-Species-Mediated Antibacterial Activity of Peroxidase-Mimic CuO Nanorods". ACS Applied Nano Materials. 1 (4): 1694–1704. doi:10.1021/acsanm.8b00153. ISSN 2574-0970.
  77. ^ Wang, Huan; Li, Penghui; Yu, Dongqin; Zhang, Yan; Wang, Zhenzhen; Liu, Chaoqun; Qiu, Hao; Liu, Zhen; Ren, Jinsong (2018-05-17). "Unraveling the Enzymatic Activity of Oxygenated Carbon Nanotubes and Their Application in the Treatment of Bacterial Infections". Nano Letters. 18 (6): 3344–3351. Bibcode:2018NanoL..18.3344W. doi:10.1021/acs.nanolett.7b05095. ISSN 1530-6984. PMID 29763562.
  78. ^ Hou, Jianwen; Vázquez-González, Margarita; Fadeev, Michael; Liu, Xia; Lavi, Ronit; Willner, Itamar (2018-05-18). "Catalyzed and Electrocatalyzed Oxidation of l-Tyrosine and l-Phenylalanine to Dopachrome by Nanozymes". Nano Letters. 18 (6): 4015–4022. Bibcode:2018NanoL..18.4015H. doi:10.1021/acs.nanolett.8b01522. ISSN 1530-6984. PMID 29745234.
  79. ^ Wang, Qingqing; Wei, Hui; Zhang, Zhiquan; Wang, Erkang; Dong, Shaojun (2018). "Nanozyme: an emerging alternative to natural enzyme for biosensing and immunoassay". TrAC Trends in Analytical Chemistry. 105: 218–224. doi:10.1016/j.trac.2018.05.012.
  80. ^ Jiang, Bing; Duan, Demin; Gao, Lizeng; Zhou, Mengjie; Fan, Kelong; Tang, Yan; Xi, Juqun; Bi, Yuhai; Tong, Zhou (2018-07-02). "Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes". Nature Protocols. 13 (7): 1506–1520. doi:10.1038/s41596-018-0001-1. ISSN 1754-2189. PMID 29967547.
  81. ^ Sun, Maozhong; Xu, Liguang; Qu, Aihua; Zhao, Peng; Hao, Tiantian; Ma, Wei; Hao, Changlong; Wen, Xiaodong; Colombari, Felippe M. (2018-07-20). "Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles". Nature Chemistry. 10 (8): 821–830. Bibcode:2018NatCh..10..821S. doi:10.1038/s41557-018-0083-y. ISSN 1755-4330. PMID 30030537.
  82. ^ Qin, Li; Wang, Xiaoyu; Liu, Yufeng; Wei, Hui (2018-07-25). "2D-MOF nanozyme sensor arrays for probing phosphates and their enzymatic hydrolysis". Analytical Chemistry. 90 (16): 9983–9989. doi:10.1021/acs.analchem.8b02428. PMID 30044077.
  83. ^ Hu, Yihui; Gao, Xuejiao J.; Zhu, Yunyao; Muhammad, Faheem; Tan, Shihua; Cao, Wen; Lin, Shichao; Jin, Zhong; Gao, Xingfa (2018-08-20). "Nitrogen-doped carbon nanomaterials as highly active and specific peroxidase mimics". Chemistry of Materials. 30 (18): 6431–6439. doi:10.1021/acs.chemmater.8b02726. ISSN 0897-4756.
  84. ^ Wang, Xiaoyu; Qin, Li; Zhou, Min; Lou, Zhangping; Wei, Hui (2018-09-03). "Nanozyme Sensor Arrays for Detecting Versatile Analytes from Small Molecules to Proteins and Cells". Analytical Chemistry. 90 (19): 11696–11702. doi:10.1021/acs.analchem.8b03374. ISSN 0003-2700. PMID 30175585.
  85. ^ Hao, Changlong; Qu, Aihua; Xu, Liguang; Sun, Maozhong; Zhang, Hongyu; Xu, Chuanlai; Kuang, Hua (2018-12-12). "Phenylalanine-mediated Porous CuxO Nanoparticle Clusters Ameliorate Parkinson's Disease by Reducing Oxidative Stress". Journal of the American Chemical Society. 141 (2): 1091–1099. doi:10.1021/jacs.8b11856. ISSN 0002-7863. PMID 30540450.
  86. ^ Ding, Hui; Cai, Yanjuan; Gao, Lizeng; Liang, Minmin; Miao, Beiping; Wu, Hanwei; Liu, Yang; Xie, Ni; Tang, Aifa (2018-12-12). "Exosome-like Nanozyme Vesicles for H2O2-Responsive Catalytic Photoacoustic Imaging of Xenograft Nasopharyngeal Carcinoma". Nano Letters. 19 (1): 203–209. doi:10.1021/acs.nanolett.8b03709. ISSN 1530-6984. PMID 30539641.
  87. ^ Wang, Hui; Wan, Kaiwei; Shi, Xinghua (2018). "Recent Advances in Nanozyme Research". Advanced Materials. 0: 1805368. doi:10.1002/adma.201805368. ISSN 1521-4095. PMID 30589120.
  88. ^ Wei, Hui; Gao, Xingfa; Qin, Li; Wang, Peng; Jin, Zhong; Zhang, Huigang; Wang, Kang; Zhou, Liqi; Lin, Shichao (2019-02-11). "e g occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics". Nature Communications. 10 (1): 704. doi:10.1038/s41467-019-08657-5. ISSN 2041-1723. PMC 6370761. PMID 30741958.
  89. ^ Huang, Yanyan; Ren, Jinsong; Qu, Xiaogang (2019-02-25). "Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications". Chemical Reviews. 119 (6): 4357–4412. doi:10.1021/acs.chemrev.8b00672. ISSN 0009-2665. PMID 30801188.
  90. ^ Dong, Shaojun; Wang, Jin; Gan, Linfeng; Chen, Jinxing; Huang, Liang (2019-05-01). "Single-atom nanozymes". Science Advances. 5 (5): eaav5490. Bibcode:2019SciA....5.5490H. doi:10.1126/sciadv.aav5490. ISSN 2375-2548. PMID 31058221.
  91. ^ Li, Yadong; Mao, Lanqun; Yu, Ping; Wang, Ming; Chen, Wenxing; Pan, Cong; Yang, Xiaoti; Mao, Junjie; Ma, Wenjie (2018-12-20). "A single-atom Fe–N4 catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection". Chemical Communications. 55 (2): 159–162. doi:10.1039/C8CC08116F. ISSN 1364-548X. PMID 30465670.
  92. ^ Li, Yadong; Wu, Yuen; Yao, Tao; Li, Yafei; Wang, Wenyu; Chen, Min; Wang, Shiqi; Xu, Qian; Zhou, Fangyao (2019-02-19). "Unraveling the enzyme-like activity of heterogeneous single atom catalyst". Chemical Communications. 55 (16): 2285–2288. doi:10.1039/C9CC00199A. ISSN 1364-548X. PMID 30694288.
  93. ^ Xu, Bolong; Wang, Hui; Wang, Weiwei; Gao, Lizeng; Li, Shanshan; Pan, Xueting; Wang, Hongyu; Yang, Hailong; Meng, Xiangqin. "Single-Atom Nanozyme for Wound Antibacterial Applications". Angewandte Chemie International Edition. 0 (ja). doi:10.1002/anie.201813994. ISSN 1521-3773.
  94. ^ Zhang, Peng; Sun, Dengrong; Cho, Ara; Weon, Seunghyun; Lee, Seonggyu; Lee, Jinwoo; Han, Jeong Woo; Kim, Dong-Pyo; Choi, Wonyong (2019). "Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis". Nature Communications. 10: 940. Bibcode:2019NatCo..10..940Z. doi:10.1038/s41467-019-08731-y. PMC 6391499.
  95. ^ Cai, Weibo; Yan, Xiyun; Huang, Peng; Rosenkrans, Zachary T.; Ni, Dalong; Jiang, Dawei (2019-07-15). "Nanozyme: new horizons for responsive biomedical applications". Chemical Society Reviews. 48 (14): 3683–3704. doi:10.1039/C8CS00718G. ISSN 1460-4744. PMID 31119258.
  96. ^ O’Mara, Peter B.; Wilde, Patrick; Benedetti, Tania M.; Andronescu, Corina; Cheong, Soshan; Gooding, J. Justin; Tilley, Richard D.; Schuhmann, Wolfgang (2019-09-11). "Cascade Reactions in Nanozymes: Spatially Separated Active Sites inside Ag-Core–Porous-Cu-Shell Nanoparticles for Multistep Carbon Dioxide Reduction to Higher Organic Molecules". Journal of the American Chemical Society. 141 (36): 14093–14097. doi:10.1021/jacs.9b07310. ISSN 0002-7863.
  97. ^ Loynachan, Colleen N.; Soleimany, Ava P.; Dudani, Jaideep S.; Lin, Yiyang; Najer, Adrian; Bekdemir, Ahmet; Chen, Qu; Bhatia, Sangeeta N.; Stevens, Molly M. (September 2019). "Renal clearable catalytic gold nanoclusters for in vivo disease monitoring". Nature Nanotechnology. 14 (9): 883–890. doi:10.1038/s41565-019-0527-6. ISSN 1748-3395.
  98. ^ Xi, Juqun; Wei, Gen; An, Lanfang; Xu, Zhuobin; Xu, Zhilong; Fan, Lei; Gao, Lizeng (2019-10-03). "Copper/Carbon Hybrid Nanozyme: Tuning Catalytic Activity by the Copper State for Antibacterial Therapy". Nano Letters. doi:10.1021/acs.nanolett.9b02242. ISSN 1530-6984.
  99. ^ Zhao, Shuai; Duan, Hongxia; Yang, Yili; Yan, Xiyun; Fan, Kelong (2019-11-01). "Fenozyme Protects the Integrity of Blood Brain Barrier against Experimental Cerebral Malaria". Nano Letters. doi:10.1021/acs.nanolett.9b03774. ISSN 1530-6984.
  100. ^ Liang, Minmin; Yan, Xiyun (2019-08-20). "Nanozymes: From New Concepts, Mechanisms, and Standards to Applications". Accounts of Chemical Research. 52 (8): 2190–2200. doi:10.1021/acs.accounts.9b00140. ISSN 0001-4842.