Artificial enzyme

Schematic drawing of artificial phosphorylase

An artificial enzyme is a synthetic, organic molecule or ion that recreate some function of an enzyme. The area promises to deliver catalysis at rates and selectivity observed in many enzymes.

HistoryEdit

Enzyme catalysis of chemical reactions occur with high selectivity and rate. The substrate is activated in a small part of the enzyme's macromolecule called the active site. There, the binding of a substrate close to functional groups in the enzyme causes catalysis by so-called proximity effects. It is possible to create similar catalysts from small molecule by combining substrate-binding with catalytic functional groups. Classically artificial enzymes bind substrates using receptors such as cyclodextrin, crown ethers, and calixarene.[1][2]

Artificial enzymes based on amino acids or peptides as characteristic molecular moieties have expanded the field of artificial enzymes or enzyme mimics. For instance, scaffolded histidine residues mimics certain metalloproteins and -enzymes such as hemocyanin, tyrosinase, and catechol oxidase).[3]

Artificial enzymes have been designed from scratch via a computational strategy using Rosetta.[4] In December 2014, it was announced that active enzymes had been produced that were made from artificial molecules which do not occur anywhere in nature.[5] In 2017, a book chapter entitled "Artificial Enzymes: The Next Wave" was published.[6]

NanozymesEdit

Nanozymes are nanomaterials with enzyme-like characteristics.[7][8] They have been widely explored for various applications, such as biosensing, bioimaging, tumor diagnosis and therapy, antibiofouling.[9][10][11][12][13]

1990sEdit

In 1996 and 1997, Dugan et al. discovered the superoxide dismutase (SOD) mimicking activities of fullerene derivatives.[14][15]

2000sEdit

A "short review" article appeared in 2005.[16] It attributed the term "nanozyme"s to "analogy with the activity of catalytic polymers (synzymes)", based on the "outstanding catalytic efficiency of some of the functional nanoparticles synthesized". The term was coined the previous year by Flavio Manea, Florence Bodar Houillon, Lucia Pasquato, and Paolo Scrimin.[17] In 2006, nanoceria (i.e., CeO2 nanoparticles) was reported as observed, in rat experiments, preventing retinal degeneration induced by intracellular peroxides (toxic reactive oxygen intermediates).[18] This was seen as indicating a possible route to an eventual treatment for causes of blindness.[19] In 2007 intrinsic peroxidase-like activity of ferromagnetic nanoparticles was reported as suggesting a wide range of applications in, for example, medicine and environmental chemistry, and the authors reported an immunoassay based on this property.[20][21] Hui Wei and Erkang Wang then (2008) used this mimetic property of easily-prepared magnetic nanoparticles (MNP) to demonstrate analytical applications to bioactive molecules, describing a colorimetric assay for hydrogen peroxide (H
2
O
2
) and a sensitive and selective platform for glucose detection.[22]

2010sEdit

As of 2016 review articles are appearing every year, in a range of journals.[23][24][25][26][27][28][29][30][31][32][33][34][35] A book-length treatment appeared in 2015, described as providing "a broad portrait of nanozymes in the context of artificial enzyme research",[36] and a 2016 Chinese book on "Enzyme Engineering" included a chapter on "Nanozymes".[37]

Colorimetric applications of peroxidase mimesis in different preparations were reported in 2010 and 2011, detecting, respectively, glucose (via carboxyl‐modified graphene oxide)[38] and single-nucleotide polymorphisms (via hemin−graphene hybrid nanosheets, and without labelling),[39] with advantages in both cases of cost and convenience. A use of colour to visualise tumour tissues was reported in 2012, using the peroxidase mimesis of MNP coated with a protein which recognises cancer cells and binds to them.[40]

Also in 2012, nanowires of vanadium pentoxide (vanadia, V2O5) were shown to suppress marine biofouling by mimicry of vanadium haloperoxidase, with anticipated ecological benefits.[41] A study at a different centre two years later reported V2O5 showing mimicry of glutathione peroxidase, in in-vitro mammalian cells, suggesting future therapeutic application.[42] The same year, 2014, it was reported that a carboxylated fullerene (C3) was neuroprotective post-injury in an in-vivo primate model of Parkinson’s disease.[43]

In 2015, a supramolecular nanodevice was proposed for bioorthogonal regulation of a transitional-metal nanozyme, based on encapsulating the nanozyme in a monolayer of hydrophilic gold nanoparticles, alternatively isolating it from the cytoplasm or allowing access, according to a gatekeeping receptor molecule controlled by competing guest species; the device is of biomimetic size and was reported as successful within the living cell, controlling pro-fluorophore and prodrug activation processes: it was suggested for imaging and therapeutic applications.[44][45] A facile process for producing Cu(OH)
2
supercages was reported, and a demonstration of their intrinsic peroxidase-mimicry.[46] A scaffolded "INAzyme" ("integrated nanozyme") arrangement was described, locating hemin (a peroxidase mimic) with glucose oxidase (GOx) in sub-micron proximity, providing a fast and efficient enzyme cascade reported as monitoring cerebral brain-cell glucose dynamically in vivo.[47] A method of ionising hydrophobe-stabilised colloid nanoparticles was described, with confirmation of their enzyme mimicry in aqueous dispersion.[48]

Field trials were announced of an MNP-amplified rapid low-cost strip test for Ebola virus, in West Africa.[49][50] H
2
O
2
was reported as displacing label DNA, adsorbed to nanoceria, into solution, where it fluoresces, providing a highly sensitive glucose test.[51] Oxidase-like nanoceria has been used for developing self-regulated bioassays.[52] Multi-enzyme mimicking Prussian blue was developed for therapeutics.[53] Histidine was used to modulate iron oxide nanoparticles' peroxidase mimicking activities.[54] Gold nanoparticles' peroxidase mimicking activities were modulated via a supramolecular strategy for cascade reactions.[55] A molecular imprinting strategy was developed to improve the selectivity of Fe3O4 nanozymes with peroxidase-like activity.[56] A new strategy was developed to enhance the peroxidase mimicking activity of gold nanoparticles by using hot electrons.[57] Researchers have designed gold nanoparticles (AuNPs) based integrative nanozymes with both SERS and peroxidase mimicking activities for measuring glucose and lactate in living tissues.[58] Cytochrome c oxidase mimicking activity of Cu2O nanoparticles was modulated by receiving electrons from cytochrome c.[59] Fe3O4 NPs were combined with glucose oxidase for tumor therapeutics.[60] Manganese dioxide nanozymes have been used as cytoprotective shells.[61] Mn3O4 Nanozyme for Parkinson's Disease (cellular model) was reported.[62] Heparin elimination in live rats has been monitored with 2D MOF based peroxidase mimics and AG73 peptide.[63] Glucose oxidase and iron oxide nanozymes were encapsulated within multi-compartmental hydrogels for incompatible tandem reactions.[64] A cascade nanozyme biosensor was developed for detection of viable Enterobacter sakazakii.[65] An integrated nanozyme of GOx@ZIF-8(NiPd) was developed for tandem catalysis.[66] Charge-switchable nanozymes were developed.[67] Site-selective RNA splicing nanozyme was developed.[68] A nanozymes special issue in Progress in Biochemistry and Biophysics was published.[69] Mn3O4 nanozymes with ROS scavenging activities have been developed for in vivo anti-inflammation.[70] A concept entitled "A Step into the Future – Applications of Nanoparticle Enzyme Mimics" was proposed.[71] Facet-dependent oxidase and peroxidase-like activities of Pd nanoparticles were reported.[72] Au@Pt multibranched nanostructures as bifunctional nanozymes were developed.[73] Ferritin coated carbon nanozymes were developed for tumor catalytic therapy.[74] CuO nanozymes were developed to kill bacteria via a light-controlled manner.[75] Enzymatic activity of oxygenated CNT was studied.[76] Nanozymes were used to catalyze the oxidation of l-Tyrosine and l-Phenylalanine to dopachrome.[77] Nanozyme as an emerging alternative to natural enzyme for biosensing and immunoassay was summarized.[78] Standardized assay was proposed for peroxidase-like nanozymes.[79] Semiconductor QDs as nucleases for site-selective photoinduced cleavage of DNA.[80] 2D-MOF nanozyme-based sensor arrays was constructed for detecting phosphates and probing their enzymatic hydrolysis.[81] N-doped carbon nanomaterials as specific peroxidase mimics were reported.[82] Nanozyme sensor arrays were developed to detect analytes from small Molecules to proteins and cells.[83] Copper oxide nanozyme for Parkinson’s Disease was reported.[84] Exosome-like nanozyme vesicles for tumor Imaging was developed.[85] A comprehensive review on nanozymes was published by Chemical Society Reviews.[8] A progress report on nanozymes was published.[86] eg occupancy as an effective descriptor was developed for the catalytic activity of perovskite oxide-based peroxidase mimics.[87] A Chemical Reviews on nanozymes was published.[88] A single-atom strategy was used for developing nanozymes.[89][90][91][92] Nanozyme for metal-free bioinspired cascade photocatalysis was reported.[93] A tutorial review on nanozymes was published by Chemical Society Reviews.[94] Cascade nanozyme reactions to convert CO2 into valuable resources was reported.[95] Renal clearable peroxidase-like gold nanoclusters were used for in vivo disease monitoring.[96] Copper/Carbon hybrid nanozyme was developed for antibacterial therapy.[97] A ferritin nanozyme was developed to treat cerebral malaria.[98] A review on nanozymes was published in Acc. Chem. Res.[99] A new strategy called strain effect was developed to modulate the metal nanozyme activity.[100] Prussian blue nanozymes were used to detect hydrogen sulfide (H2S) in the brains of living rats.[101] Photolyase-like CeO2 was reported.[102]

2020sEdit

A single-atom nanozyme was developed for for sepsis management.[103] Self-assembled single-atom nanozyme was developed for photodynamic therapy treatment of tumor.[104] An ultrasound-switchable nanozyme against multidrug-resistant bacterial infection was reported.[105] A nanozyme-based H2O2 homeostasis disruptor for chemodynamic tumor therapy was reported.[106] An iridium oxide nanozyme for cascade reaction was developed for tumor therapy.[107] A book entitled Nanozymology was published.[108] Free radical scavenging nanosponge was engineered for ischemic stroke.[109] A minireview on gold-conjugate based nanozymes.[110] SnSe nanosheets as dehydrogenase mimics were developed.[111] Carbon dot-based topoisomerase I mimic was reported to cleave DNA.[112] Nanozyme sensor arrays were developed to detect pesticides.[113] Bioorthogonal nanozymes were used to treat bacterial biofilms.[114] Rhodium nanozyme was used to treat colon diseases.[115] Fe-N-C nanozyme was developed to study drug-drug interaction.[116] Polymeric nanozyme was developed for second near-infrared photothermal ferrotherapy.[117] Cu5.4O nanozyme was reported for anti-inflammation therapy.[118] CeO2@ZIF-8 nanozyme was developed to treat reperfusion-induced injury in ischemic stroke.[119] Peroxidase-like activity of Fe3O4 was explored to study the electrocatalytic kinetics at single-molecule/single-particle level.[120] Cu-TA nanozyme was fabricated to scavenging ROS from cigarette smoke.[121] Metalloenzyme-like copper nanocluster was reported to have anticancer and imaging activities simultaneously.[122] An integrated nanozyme was developed for anti-inflammation therapy.[123] Enhanced enzyme-like catalytic activity was reported under non-equilibrium conditions for gold nanozymes.[124]

See alsoEdit

ReferencesEdit

  1. ^ Breslow, Ronald (2006). Artificial Enzymes. John Wiley & Sons. ISBN 978-3-527-60680-1.[page needed]
  2. ^ Kirby, Anthony John; Hollfelder, Florian (2009). From Enzyme Models to Model Enzymes. Royal Society of Chemistry. ISBN 978-0-85404-175-6.[page needed]
  3. ^ Albada, H. Bauke; Soulimani, Fouad; Weckhuysen, Bert M.; Liskamp, Rob M. J. (2007). "Scaffolded amino acids as a close structural mimic of type-3 copper binding sites". Chemical Communications (46): 4895–7. doi:10.1039/b709400k. PMID 18361361.
  4. ^ Röthlisberger, Daniela; Khersonsky, Olga; Wollacott, Andrew M.; Jiang, Lin; DeChancie, Jason; Betker, Jamie; Gallaher, Jasmine L.; Althoff, Eric A.; Zanghellini, Alexandre; Dym, Orly; Albeck, Shira; Houk, Kendall N.; Tawfik, Dan S.; Baker, David (19 March 2008). "Kemp elimination catalysts by computational enzyme design". Nature. 453 (7192): 190–195. Bibcode:2008Natur.453..190R. doi:10.1038/nature06879. PMID 18354394.
  5. ^ "World's first artificial enzymes created using synthetic biology". University of Cambridge. 1 December 2014. Retrieved 14 December 2016.
  6. ^ Cheng, Hanjun; Wang, Xiaoyu; Wei, Hui (2017). "Artificial Enzymes: The Next Wave". Encyclopedia of Physical Organic Chemistry. American Cancer Society. pp. 1–64. doi:10.1002/9781118468586.epoc5016 (inactive 2020-06-03). ISBN 978-1-118-46858-6.
  7. ^ Wei, Hui; Wang, Erkang (2013). "Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes". Chemical Society Reviews. 42 (14): 6060–93. doi:10.1039/c3cs35486e. PMID 23740388. S2CID 39693417.
  8. ^ a b Wu, Jiangjiexing; Wang, Xiaoyu; Wang, Quan; Lou, Zhangping; Li, Sirong; Zhu, Yunyao; Qin, Li; Wei, Hui (2019). "Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II)". Chemical Society Reviews. 48 (4): 1004–1076. doi:10.1039/c8cs00457a. PMID 30534770.
  9. ^ 阎锡蕴 (2014). 纳米材料新特性及生物医学应用 (第1版 ed.). 北京: 科学出版社. ISBN 978-7-03-041828-9.[page needed]
  10. ^ Wang, Zerong (2017-04-17). Encyclopedia of Physical Organic Chemistry, 5 Volume Set (Edición: Volumes 1 - 5. ed.). Place of publication not identified: John Wiley & Sons Inc. ISBN 9781118470459.
  11. ^ GAO, Li-Zeng; YAN, Xi-Yun (2013). "纳米酶的发现与应用" [Discovery and Current Application of Nanozyme]. Acta Agronomica Sinica (in Chinese). 40 (10): 892. doi:10.3724/SP.J.1206.2013.00409.
  12. ^ Wang, Xiaoyu; Hu, Yihui; Wei, Hui (2016). "Nanozymes in bionanotechnology: from sensing to therapeutics and beyond". Inorganic Chemistry Frontiers. 3 (1): 41–60. doi:10.1039/c5qi00240k. S2CID 138012998.
  13. ^ Duan, Demin; Fan, Kelong; Zhang, Dexi; Tan, Shuguang; Liang, Mifang; Liu, Yang; Zhang, Jianlin; Zhang, Panhe; Liu, Wei; Qiu, Xiangguo; Kobinger, Gary P.; Fu Gao, George; Yan, Xiyun (December 2015). "Nanozyme-strip for rapid local diagnosis of Ebola". Biosensors and Bioelectronics. 74: 134–141. doi:10.1016/j.bios.2015.05.025. PMID 26134291.
  14. ^ Dugan, Laura L.; Gabrielsen, Joseph K.; Yu, Shan P.; Lin, Tien-Sung; Choi, Dennis W. (April 1996). "Buckminsterfullerenol Free Radical Scavengers Reduce Excitotoxic and Apoptotic Death of Cultured Cortical Neurons" (PDF). Neurobiology of Disease. 3 (2): 129–135. doi:10.1006/nbdi.1996.0013. PMID 9173920. S2CID 26139075.
  15. ^ Dugan, Laura L.; Turetsky, Dorothy M.; Du, Cheng; Lobner, Doug; Wheeler, Mark; Almli, C. Robert; Shen, Clifton K.-F.; Luh, Tien-Yau; Choi, Dennis W.; Lin, Tien-Sung (19 August 1997). "Carboxyfullerenes as neuroprotective agents". Proceedings of the National Academy of Sciences of the United States of America. 94 (17): 9434–9439. Bibcode:1997PNAS...94.9434D. doi:10.1073/pnas.94.17.9434. PMC 23208. PMID 9256500.
  16. ^ Pasquato, Lucia; Pengo, Paolo; Scrimin, Paolo (January 2005). "Nanozymes: Functional Nanoparticle-based Catalysts". Supramolecular Chemistry. 17 (1–2): 163–171. doi:10.1080/10610270412331328817.
  17. ^ Manea, Flavio; Houillon, Florence Bodar; Pasquato, Lucia; Scrimin, Paolo (19 November 2004). "Nanozymes: Gold-Nanoparticle-Based Transphosphorylation Catalysts". Angewandte Chemie International Edition. 43 (45): 6165–6169. doi:10.1002/anie.200460649. PMID 15549744.
  18. ^ Chen, Junping; Patil, Swanand; Seal, Sudipta; McGinnis, James F. (29 October 2006). "Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides". Nature Nanotechnology. 1 (2): 142–150. Bibcode:2006NatNa...1..142C. doi:10.1038/nnano.2006.91. PMID 18654167.
  19. ^ Silva, Gabriel A. (November 2006). "Seeing the benefits of ceria". Nature Nanotechnology. 1 (2): 92–94. Bibcode:2006NatNa...1...92S. doi:10.1038/nnano.2006.111. PMID 18654154.
  20. ^ Gao, Lizeng; Zhuang, Jie; Nie, Leng; Zhang, Jinbin; Zhang, Yu; Gu, Ning; Wang, Taihong; Feng, Jing; Yang, Dongling; Perrett, Sarah; Yan, Xiyun (26 August 2007). "Intrinsic peroxidase-like activity of ferromagnetic nanoparticles". Nature Nanotechnology. 2 (9): 577–583. Bibcode:2007NatNa...2..577G. doi:10.1038/nnano.2007.260. PMID 18654371.
  21. ^ Perez, J. Manuel (26 August 2007). "Hidden talent". Nature Nanotechnology. 2 (9): 535–536. Bibcode:2007NatNa...2..535P. doi:10.1038/nnano.2007.282. PMID 18654361.
  22. ^ Wei, Hui; Wang, Erkang (March 2008). "Fe3O4 Magnetic Nanoparticles as Peroxidase Mimetics and Their Applications in H2O2 and Glucose Detection". Analytical Chemistry. 80 (6): 2250–2254. doi:10.1021/ac702203f. PMID 18290671.
  23. ^ Karakoti, Ajay; Singh, Sanjay; Dowding, Janet M.; Seal, Sudipta; Self, William T. (2010). "Redox-active radical scavenging nanomaterials". Chemical Society Reviews. 39 (11): 4422–32. doi:10.1039/b919677n. PMID 20717560.
  24. ^ Xie, Jianxin; Zhang, Xiaodan; Wang, Hui; Zheng, Huzhi; Huang, Yuming; Xie, Jianxin (October 2012). "Analytical and environmental applications of nanoparticles as enzyme mimetics". TrAC Trends in Analytical Chemistry. 39: 114–129. doi:10.1016/j.trac.2012.03.021.
  25. ^ Wei, Hui; Wang, Erkang (2013). "Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes". Chemical Society Reviews. 42 (14): 6060–93. doi:10.1039/c3cs35486e. PMID 23740388.
  26. ^ GAO, Li-Zeng; YAN, Xi-Yun (2013). "Discovery and Current Application of Nanozyme". Acta Agronomica Sinica. 40 (10): 892. doi:10.3724/sp.j.1206.2013.00409.
  27. ^ He, Weiwei; Wamer, Wayne; Xia, Qingsu; Yin, Jun-jie; Fu, Peter P. (29 May 2014). "Enzyme-Like Activity of Nanomaterials". Journal of Environmental Science and Health, Part C. 32 (2): 186–211. doi:10.1080/10590501.2014.907462. PMID 24875443.
  28. ^ Lin, Youhui; Ren, Jinsong; Qu, Xiaogang (July 2014). "Nano-Gold as Artificial Enzymes: Hidden Talents". Advanced Materials. 26 (25): 4200–4217. doi:10.1002/adma.201400238. PMID 24692212.
  29. ^ Lin, Youhui; Ren, Jinsong; Qu, Xiaogang (17 January 2014). "Catalytically Active Nanomaterials: A Promising Candidate for Artificial Enzymes". Accounts of Chemical Research. 47 (4): 1097–1105. doi:10.1021/ar400250z. PMID 24437921.
  30. ^ Prins, Leonard J. (22 June 2015). "Emergence of Complex Chemistry on an Organic Monolayer". Accounts of Chemical Research. 48 (7): 1920–1928. doi:10.1021/acs.accounts.5b00173. PMID 26098550.
  31. ^ Zheng, Li; Zhao, Jinhang; Niu, Xiaofang; Yang, Yunhui (2015). "Nanomaterial-based peroxidase enzyme mimics with applications to colorimetric analysis and electrochemical sensor". Materials Review. 29: 115–12.
  32. ^ Wang, Xiaoyu; Hu, Yihui; Wei, Hui (2016). "Nanozymes in bionanotechnology: from sensing to therapeutics and beyond". Inorganic Chemistry Frontiers. 3 (1): 41–60. doi:10.1039/c5qi00240k.
  33. ^ Gao, Lizeng; Yan, Xiyun (22 March 2016). "Nanozymes: an emerging field bridging nanotechnology and biology". Science China Life Sciences. 59 (4): 400–402. doi:10.1007/s11427-016-5044-3. PMID 27002958.
  34. ^ Ragg, Ruben; Tahir, Muhammad N.; Tremel, Wolfgang (May 2016). "Solids Go Bio: Inorganic Nanoparticles as Enzyme Mimics". European Journal of Inorganic Chemistry. 2016 (13–14): 1906–1915. doi:10.1002/ejic.201501237.
  35. ^ Kuah, Evelyn; Toh, Seraphina; Yee, Jessica; Ma, Qian; Gao, Zhiqiang (13 June 2016). "Enzyme Mimics: Advances and Applications". Chemistry - A European Journal. 22 (25): 8404–8430. doi:10.1002/chem.201504394. PMID 27062126.
  36. ^ Wang, Xiaoyu; Guo, Wenjing; Hu, Yihui; Wu, Jiangjiexing; Wei, Hui (2016). Nanozymes: Next Wave of Artificial Enzymes. Springer. ISBN 978-3-662-53068-9.[page needed]
  37. ^ 李正强, 副 罗贵民 主编 高仁钧 (2016-05-01). 酶工程(第3版) (第3版 ed.). 化学工业出版社. ISBN 978-7-122-25760-4.[page needed]
  38. ^ Song, Yujun; Qu, Konggang; Zhao, Chao; Ren, Jinsong; Qu, Xiaogang (5 March 2010). "Graphene Oxide: Intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection". Advanced Materials. 22 (19): 2206–2210. doi:10.1002/adma.200903783. PMID 20564257.
  39. ^ Guo, Yujing; Deng, Liu; Li, Jing; Guo, Shaojun; Wang, Erkang; Dong, Shaojun (10 January 2011). "Hemin−Graphene Hybrid Nanosheets with Intrinsic Peroxidase-like Activity for Label-free Colorimetric Detection of Single-Nucleotide Polymorphism". ACS Nano. 5 (2): 1282–1290. doi:10.1021/nn1029586. PMID 21218851.
  40. ^ Fan, Kelong; Cao, Changqian; Pan, Yongxin; Lu, Di; Yang, Dongling; Feng, Jing; Song, Lina; Liang, Minmin; Yan, Xiyun (17 June 2012). "Magnetoferritin nanoparticles for targeting and visualizing tumour tissues". Nature Nanotechnology. 7 (7): 459–464. Bibcode:2012NatNa...7..459F. doi:10.1038/nnano.2012.90. PMID 22706697.
  41. ^ Natalio, Filipe; André, Rute; Hartog, Aloysius F.; Stoll, Brigitte; Jochum, Klaus Peter; Wever, Ron; Tremel, Wolfgang (1 July 2012). "Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation" (PDF). Nature Nanotechnology. 7 (8): 530–535. Bibcode:2012NatNa...7..530N. doi:10.1038/nnano.2012.91. PMID 22751222.
  42. ^ Vernekar, Amit A.; Sinha, Devanjan; Srivastava, Shubhi; Paramasivam, Prasath U.; D’Silva, Patrick; Mugesh, Govindasamy (21 November 2014). "An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires". Nature Communications. 5 (1): 5301. Bibcode:2014NatCo...5E5301V. doi:10.1038/ncomms6301. PMID 25412933.
  43. ^ Dugan, Laura L.; Tian, LinLin; Quick, Kevin L.; Hardt, Josh I.; Karimi, Morvarid; Brown, Chris; Loftin, Susan; Flores, Hugh; Moerlein, Stephen M.; Polich, John; Tabbal, Samer D.; Mink, Jonathan W.; Perlmutter, Joel S. (September 2014). "Carboxyfullerene neuroprotection postinjury in Parkinsonian nonhuman primates". Annals of Neurology. 76 (3): 393–402. doi:10.1002/ana.24220. PMC 4165715. PMID 25043598.
  44. ^ Tonga, Gulen Yesilbag; Jeong, Youngdo; Duncan, Bradley; Mizuhara, Tsukasa; Mout, Rubul; Das, Riddha; Kim, Sung Tae; Yeh, Yi-Cheun; Yan, Bo; Hou, Singyuk; Rotello, Vincent M. (23 June 2015). "Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts". Nature Chemistry. 7 (7): 597–603. Bibcode:2015NatCh...7..597T. doi:10.1038/nchem.2284. PMC 5697749. PMID 26100809.
  45. ^ Unciti-Broceta, Asier (23 June 2015). "Rise of the nanobots". Nature Chemistry. 7 (7): 538–539. Bibcode:2015NatCh...7..538U. doi:10.1038/nchem.2291. PMID 26100798.
  46. ^ Cai, Ren; Yang, Dan; Peng, Shengjie; Chen, Xigao; Huang, Yun; Liu, Yuan; Hou, Weijia; Yang, Shengyuan; Liu, Zhenbao; Tan, Weihong (23 October 2015). "Single Nanoparticle to 3D Supercage: Framing for an Artificial Enzyme System". Journal of the American Chemical Society. 137 (43): 13957–13963. doi:10.1021/jacs.5b09337. PMC 4927331. PMID 26464081.
  47. ^ Cheng, Hanjun; Zhang, Lei; He, Jian; Guo, Wenjing; Zhou, Zhengyang; Zhang, Xuejin; Nie, Shuming; Wei, Hui (6 May 2016). "Integrated Nanozymes with Nanoscale Proximity for in Vivo Neurochemical Monitoring in Living Brains". Analytical Chemistry. 88 (10): 5489–5497. doi:10.1021/acs.analchem.6b00975. PMID 27067749. Lay summaryPhys.org (April 13, 2016).
  48. ^ Liu, Yuan; Purich, Daniel L.; Wu, Cuichen; Wu, Yuan; Chen, Tao; Cui, Cheng; Zhang, Liqin; Cansiz, Sena; Hou, Weijia; Wang, Yanyue; Yang, Shengyuan; Tan, Weihong (20 November 2015). "Ionic Functionalization of Hydrophobic Colloidal Nanoparticles To Form Ionic Nanoparticles with Enzymelike Properties". Journal of the American Chemical Society. 137 (47): 14952–14958. doi:10.1021/jacs.5b08533. PMC 4898269. PMID 26562739.
  49. ^ "New Ebola test to make diagnosis easier, faster and cheaper". Elsevier. 1 December 2015.
  50. ^ Duan, Demin; Fan, Kelong; Zhang, Dexi; Tan, Shuguang; Liang, Mifang; Liu, Yang; Zhang, Jianlin; Zhang, Panhe; Liu, Wei; Qiu, Xiangguo; Kobinger, Gary P.; Fu Gao, George; Yan, Xiyun (December 2015). "Nanozyme-strip for rapid local diagnosis of Ebola". Biosensors and Bioelectronics. 74: 134–141. doi:10.1016/j.bios.2015.05.025. PMID 26134291.
  51. ^ Liu, Biwu; Sun, Ziyi; Huang, Po-Jung Jimmy; Liu, Juewen (20 January 2015). "Hydrogen Peroxide Displacing DNA from Nanoceria: Mechanism and Detection of Glucose in Serum". Journal of the American Chemical Society. 137 (3): 1290–1295. doi:10.1021/ja511444e. PMID 25574932.
  52. ^ Cheng, Hanjun; Lin, Shichao; Muhammad, Faheem; Lin, Ying-Wu; Wei, Hui (November 2016). "Rationally Modulate the Oxidase-like Activity of Nanoceria for Self-Regulated Bioassays". ACS Sensors. 1 (11): 1336–1343. doi:10.1021/acssensors.6b00500.
  53. ^ Zhang, Wei; Hu, Sunling; Yin, Jun-Jie; He, Weiwei; Lu, Wei; Ma, Ming; Gu, Ning; Zhang, Yu (9 March 2016). "Prussian Blue Nanoparticles as Multienzyme Mimetics and Reactive Oxygen Species Scavengers". Journal of the American Chemical Society. 138 (18): 5860–5865. doi:10.1021/jacs.5b12070. PMID 26918394.
  54. ^ Fan, Kelong; Wang, Hui; Xi, Juqun; Liu, Qi; Meng, Xiangqin; Duan, Demin; Gao, Lizeng; Yan, Xiyun (2017). "Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site" (PDF). Chemical Communications. 53 (2): 424–427. doi:10.1039/c6cc08542c. PMID 27959363.
  55. ^ Zhao, Yan; Huang, Yucheng; Zhu, Hui; Zhu, Qingqing; Xia, Yunsheng (16 December 2016). "Three-in-One: Sensing, Self-Assembly, and Cascade Catalysis of Cyclodextrin Modified Gold Nanoparticles". Journal of the American Chemical Society. 138 (51): 16645–16654. doi:10.1021/jacs.6b07590. PMID 27983807.
  56. ^ Zhang, Zijie; Zhang, Xiaohan; Liu, Biwu; Liu, Juewen (5 April 2017). "Molecular Imprinting on Inorganic Nanozymes for Hundred-fold Enzyme Specificity". Journal of the American Chemical Society. 139 (15): 5412–5419. doi:10.1021/jacs.7b00601. PMID 28345903.
  57. ^ Wang, Chen; Shi, Yi; Dan, Yuan-Yuan; Nie, Xing-Guo; Li, Jian; Xia, Xing-Hua (17 May 2017). "Enhanced Peroxidase-Like Performance of Gold Nanoparticles by Hot Electrons". Chemistry - A European Journal. 23 (28): 6717–6723. doi:10.1002/chem.201605380. PMID 28217846.
  58. ^ Hu, Yihui; Cheng, Hanjun; Zhao, Xiaozhi; Wu, Jiangjiexing; Muhammad, Faheem; Lin, Shichao; He, Jian; Zhou, Liqi; Zhang, Chengping; Deng, Yu; Wang, Peng; Zhou, Zhengyang; Nie, Shuming; Wei, Hui (June 2017). "Surface-Enhanced Raman Scattering Active Gold Nanoparticles with Enzyme-Mimicking Activities for Measuring Glucose and Lactate in Living Tissues". ACS Nano. 11 (6): 5558–5566. doi:10.1021/acsnano.7b00905. PMID 28549217.
  59. ^ Chen, Ming; Wang, Zhonghua; Shu, Jinxia; Jiang, Xiaohui; Wang, Wei; Shi, Zhen-Hua; Lin, Ying-Wu (28 July 2017). "Mimicking a Natural Enzyme System: Cytochrome c Oxidase-Like Activity of Cu2O Nanoparticles by Receiving Electrons from Cytochrome c". Inorganic Chemistry. 56 (16): 9400–9403. doi:10.1021/acs.inorgchem.7b01393. PMID 28753305.
  60. ^ Huo, Minfeng; Wang, Liying; Chen, Yu; Shi, Jianlin (25 August 2017). "Tumor-selective catalytic nanomedicine by nanocatalyst delivery". Nature Communications. 8 (1): 357. Bibcode:2017NatCo...8..357H. doi:10.1038/s41467-017-00424-8. PMC 5572465. PMID 28842577.
  61. ^ Li, Wei; Liu, Zhen; Liu, Chaoqun; Guan, Yijia; Ren, Jinsong; Qu, Xiaogang (23 October 2017). "Manganese Dioxide Nanozymes as Responsive Cytoprotective Shells for Individual Living Cell Encapsulation". Angewandte Chemie International Edition. 56 (44): 13661–13665. doi:10.1002/anie.201706910. PMID 28884490.
  62. ^ Singh, Namrata; Savanur, Mohammed Azharuddin; Srivastava, Shubhi; D'Silva, Patrick; Mugesh, Govindasamy (6 November 2017). "A Redox Modulatory Mn3O4 Nanozyme with Multi‐Enzyme Activity Provides Efficient Cytoprotection to Human Cells in a Parkinson's Disease Model". Angewandte Chemie International Edition. 56 (45): 14267–14271. doi:10.1002/anie.201708573. PMID 28922532.
  63. ^ Cheng, Hanjun; Liu, Yufeng; Hu, Yihui; Ding, Yubin; Lin, Shichao; Cao, Wen; Wang, Qian; Wu, Jiangjiexing; Muhammad, Faheem; Zhao, Xiaozhi; Zhao, Dan; Li, Zhe; Xing, Hang; Wei, Hui (23 October 2017). "Monitoring of Heparin Activity in Live Rats Using Metal–Organic Framework Nanosheets as Peroxidase Mimics". Analytical Chemistry. 89 (21): 11552–11559. doi:10.1021/acs.analchem.7b02895. PMID 28992698.
  64. ^ Tan, Hongliang; Guo, Song; Dinh, Ngoc-Duy; Luo, Rongcong; Jin, Lin; Chen, Chia-Hung (22 September 2017). "Heterogeneous multi-compartmental hydrogel particles as synthetic cells for incompatible tandem reactions". Nature Communications. 8 (1): 663. Bibcode:2017NatCo...8..663T. doi:10.1038/s41467-017-00757-4. PMC 5610232. PMID 28939810.
  65. ^ Zhang, Li; Chen, Yuting; Cheng, Nan; Xu, Yuancong; Huang, Kunlun; Luo, Yunbo; Wang, Peixia; Duan, Demin; Xu, Wentao (20 September 2017). "Ultrasensitive Detection of Viable Enterobacter sakazakii by a Continual Cascade Nanozyme Biosensor". Analytical Chemistry. 89 (19): 10194–10200. doi:10.1021/acs.analchem.7b01266. PMID 28881135.
  66. ^ Wang, Qingqing; Zhang, Xueping; Huang, Liang; Zhang, Zhiquan; Dong, Shaojun (11 December 2017). "GOx@ZIF-8(NiPd) Nanoflower: An Artificial Enzyme System for Tandem Catalysis". Angewandte Chemie International Edition. 56 (50): 16082–16085. doi:10.1002/anie.201710418. PMID 29119659.
  67. ^ Gupta, Akash; Das, Riddha; Yesilbag Tonga, Gulen; Mizuhara, Tsukasa; Rotello, Vincent M. (21 December 2017). "Charge-Switchable Nanozymes for Bioorthogonal Imaging of Biofilm-Associated Infections". ACS Nano. 12 (1): 89–94. doi:10.1021/acsnano.7b07496. PMC 5846330. PMID 29244484.
  68. ^ Petree, Jessica R.; Yehl, Kevin; Galior, Kornelia; Glazier, Roxanne; Deal, Brendan; Salaita, Khalid (19 December 2017). "Site-Selective RNA Splicing Nanozyme: DNAzyme and RtcB Conjugates on a Gold Nanoparticle". ACS Chemical Biology. 13 (1): 215–224. doi:10.1021/acschembio.7b00437. PMC 6085866. PMID 29155548.
  69. ^ "An issue for nanozymes research". www.pibb.ac.cn. Retrieved 2018-02-06.
  70. ^ Yao, Jia; Cheng, Yuan; Zhou, Min; Zhao, Sheng; Lin, Shichao; Wang, Xiaoyu; Wu, Jiangjiexing; Li, Sirong; Wei, Hui (2018). "ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation". Chemical Science. 9 (11): 2927–2933. doi:10.1039/c7sc05476a. PMC 5915792. PMID 29732076.
  71. ^ Korschelt, Karsten; Tahir, Muhammad Nawaz; Tremel, Wolfgang (11 July 2018). "A Step into the Future: Applications of Nanoparticle Enzyme Mimics". Chemistry - A European Journal. 24 (39): 9703–9713. doi:10.1002/chem.201800384. PMID 29447433.
  72. ^ Fang, Ge; Li, Weifeng; Shen, Xiaomei; Perez-Aguilar, Jose Manuel; Chong, Yu; Gao, Xingfa; Chai, Zhifang; Chen, Chunying; Ge, Cuicui; Zhou, Ruhong (9 January 2018). "Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria". Nature Communications. 9 (1): 129. Bibcode:2018NatCo...9..129F. doi:10.1038/s41467-017-02502-3. PMC 5760645. PMID 29317632.
  73. ^ Wu, Jiangjiexing; Qin, Kang; Yuan, Dan; Tan, Jun; Qin, Li; Zhang, Xuejin; Wei, Hui (26 March 2018). "Rational Design of Au@Pt Multibranched Nanostructures as Bifunctional Nanozymes". ACS Applied Materials & Interfaces. 10 (15): 12954–12959. doi:10.1021/acsami.7b17945. PMID 29577720.
  74. ^ Fan, Kelong; Xi, Juqun; Fan, Lei; Wang, Peixia; Zhu, Chunhua; Tang, Yan; Xu, Xiangdong; Liang, Minmin; Jiang, Bing; Yan, Xiyun; Gao, Lizeng (12 April 2018). "In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy". Nature Communications. 9 (1): 1440. Bibcode:2018NatCo...9.1440F. doi:10.1038/s41467-018-03903-8. PMC 5897348. PMID 29650959.
  75. ^ Karim, Md. Nurul; Singh, Mandeep; Weerathunge, Pabudi; Bian, Pengju; Zheng, Rongkun; Dekiwadia, Chaitali; Ahmed, Taimur; Walia, Sumeet; Della Gaspera, Enrico; Singh, Sanjay; Ramanathan, Rajesh; Bansal, Vipul (6 March 2018). "Visible-Light-Triggered Reactive-Oxygen-Species-Mediated Antibacterial Activity of Peroxidase-Mimic CuO Nanorods". ACS Applied Nano Materials. 1 (4): 1694–1704. doi:10.1021/acsanm.8b00153.
  76. ^ Wang, Huan; Li, Penghui; Yu, Dongqin; Zhang, Yan; Wang, Zhenzhen; Liu, Chaoqun; Qiu, Hao; Liu, Zhen; Ren, Jinsong; Qu, Xiaogang (15 May 2018). "Unraveling the Enzymatic Activity of Oxygenated Carbon Nanotubes and Their Application in the Treatment of Bacterial Infections". Nano Letters. 18 (6): 3344–3351. Bibcode:2018NanoL..18.3344W. doi:10.1021/acs.nanolett.7b05095. PMID 29763562.
  77. ^ Hou, Jianwen; Vázquez-González, Margarita; Fadeev, Michael; Liu, Xia; Lavi, Ronit; Willner, Itamar (10 May 2018). "Catalyzed and Electrocatalyzed Oxidation of l-Tyrosine and l-Phenylalanine to Dopachrome by Nanozymes". Nano Letters. 18 (6): 4015–4022. Bibcode:2018NanoL..18.4015H. doi:10.1021/acs.nanolett.8b01522. PMID 29745234.
  78. ^ Wang, Qingqing; Wei, Hui; Zhang, Zhiquan; Wang, Erkang; Dong, Shaojun (August 2018). "Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay". TrAC Trends in Analytical Chemistry. 105: 218–224. doi:10.1016/j.trac.2018.05.012.
  79. ^ Jiang, Bing; Duan, Demin; Gao, Lizeng; Zhou, Mengjie; Fan, Kelong; Tang, Yan; Xi, Juqun; Bi, Yuhai; Tong, Zhou; Gao, George Fu; Xie, Ni; Tang, Aifa; Nie, Guohui; Liang, Minmin; Yan, Xiyun (2 July 2018). "Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes". Nature Protocols. 13 (7): 1506–1520. doi:10.1038/s41596-018-0001-1. PMID 29967547.
  80. ^ Sun, Maozhong; Xu, Liguang; Qu, Aihua; Zhao, Peng; Hao, Tiantian; Ma, Wei; Hao, Changlong; Wen, Xiaodong; Colombari, Felippe M.; de Moura, Andre F.; Kotov, Nicholas A.; Xu, Chuanlai; Kuang, Hua (20 July 2018). "Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles". Nature Chemistry. 10 (8): 821–830. Bibcode:2018NatCh..10..821S. doi:10.1038/s41557-018-0083-y. PMID 30030537.
  81. ^ Qin, Li; Wang, Xiaoyu; Liu, Yufeng; Wei, Hui (25 July 2018). "2D-Metal–Organic-Framework-Nanozyme Sensor Arrays for Probing Phosphates and Their Enzymatic Hydrolysis". Analytical Chemistry. 90 (16): 9983–9989. doi:10.1021/acs.analchem.8b02428. PMID 30044077.
  82. ^ Hu, Yihui; Gao, Xuejiao J.; Zhu, Yunyao; Muhammad, Faheem; Tan, Shihua; Cao, Wen; Lin, Shichao; Jin, Zhong; Gao, Xingfa; Wei, Hui (20 August 2018). "Nitrogen-Doped Carbon Nanomaterials as Highly Active and Specific Peroxidase Mimics". Chemistry of Materials. 30 (18): 6431–6439. doi:10.1021/acs.chemmater.8b02726.
  83. ^ Wang, Xiaoyu; Qin, Li; Zhou, Min; Lou, Zhangping; Wei, Hui (3 September 2018). "Nanozyme Sensor Arrays for Detecting Versatile Analytes from Small Molecules to Proteins and Cells". Analytical Chemistry. 90 (19): 11696–11702. doi:10.1021/acs.analchem.8b03374. PMID 30175585.
  84. ^ Hao, Changlong; Qu, Aihua; Xu, Liguang; Sun, Maozhong; Zhang, Hongyu; Xu, Chuanlai; Kuang, Hua (12 December 2018). "Chiral Molecule-mediated Porous CuxO Nanoparticle Clusters with Antioxidation Activity for Ameliorating Parkinson's Disease". Journal of the American Chemical Society. 141 (2): 1091–1099. doi:10.1021/jacs.8b11856. PMID 30540450.
  85. ^ Ding, Hui; Cai, Yanjuan; Gao, Lizeng; Liang, Minmin; Miao, Beiping; Wu, Hanwei; Liu, Yang; Xie, Ni; Tang, Aifa; Fan, Kelong; Yan, Xiyun; Nie, Guohui (12 December 2018). "Exosome-like Nanozyme Vesicles for H2O2-Responsive Catalytic Photoacoustic Imaging of Xenograft Nasopharyngeal Carcinoma". Nano Letters. 19 (1): 203–209. doi:10.1021/acs.nanolett.8b03709. PMID 30539641.
  86. ^ Wang, Hui; Wan, Kaiwei; Shi, Xinghua (27 December 2018). "Recent Advances in Nanozyme Research". Advanced Materials. 31 (45): 1805368. doi:10.1002/adma.201805368. PMID 30589120.
  87. ^ Wang, Xiaoyu; Gao, Xuejiao J.; Qin, Li; Wang, Changda; Song, Li; Zhou, Yong-Ning; Zhu, Guoyin; Cao, Wen; Lin, Shichao; Zhou, Liqi; Wang, Kang; Zhang, Huigang; Jin, Zhong; Wang, Peng; Gao, Xingfa; Wei, Hui (11 February 2019). "eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics". Nature Communications. 10 (1): 704. Bibcode:2019NatCo..10..704W. doi:10.1038/s41467-019-08657-5. PMC 6370761. PMID 30741958.
  88. ^ Huang, Yanyan; Ren, Jinsong; Qu, Xiaogang (25 February 2019). "Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications". Chemical Reviews. 119 (6): 4357–4412. doi:10.1021/acs.chemrev.8b00672. PMID 30801188.
  89. ^ Huang, Liang; Chen, Jinxing; Gan, Linfeng; Wang, Jin; Dong, Shaojun (3 May 2019). "Single-atom nanozymes". Science Advances. 5 (5): eaav5490. Bibcode:2019SciA....5.5490H. doi:10.1126/sciadv.aav5490. PMC 6499548. PMID 31058221.
  90. ^ Ma, Wenjie; Mao, Junjie; Yang, Xiaoti; Pan, Cong; Chen, Wenxing; Wang, Ming; Yu, Ping; Mao, Lanqun; Li, Yadong (2019). "A single-atom Fe–N4 catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection". Chemical Communications. 55 (2): 159–162. doi:10.1039/c8cc08116f. PMID 30465670.
  91. ^ Zhao, Chao; Xiong, Can; Liu, Xiaokang; Qiao, Man; Li, Zhijun; Yuan, Tongwei; Wang, Jing; Qu, Yunteng; Wang, XiaoQian; Zhou, Fangyao; Xu, Qian; Wang, Shiqi; Chen, Min; Wang, Wenyu; Li, Yafei; Yao, Tao; Wu, Yuen; Li, Yadong (2019). "Unraveling the enzyme-like activity of heterogeneous single atom catalyst". Chemical Communications. 55 (16): 2285–2288. doi:10.1039/c9cc00199a. PMID 30694288.
  92. ^ Xu, Bolong; Wang, Hui; Wang, Weiwei; Gao, Lizeng; Li, Shanshan; Pan, Xueting; Wang, Hongyu; Yang, Hailong; Meng, Xiangqin; Wu, Qiuwen; Zheng, Lirong; Chen, Shenming; Shi, Xinghua; Fan, Kelong; Yan, Xiyun; Liu, Huiyu (April 2019). "A Single‐Atom Nanozyme for Wound Disinfection Applications". Angewandte Chemie International Edition. 58 (15): 4911–4916. doi:10.1002/anie.201813994. PMID 30697885.
  93. ^ Zhang, Peng; Sun, Dengrong; Cho, Ara; Weon, Seunghyun; Lee, Seonggyu; Lee, Jinwoo; Han, Jeong Woo; Kim, Dong-Pyo; Choi, Wonyong (26 February 2019). "Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis". Nature Communications. 10 (1): 940. Bibcode:2019NatCo..10..940Z. doi:10.1038/s41467-019-08731-y. PMC 6391499. PMID 30808912.
  94. ^ Jiang, Dawei; Ni, Dalong; Rosenkrans, Zachary T.; Huang, Peng; Yan, Xiyun; Cai, Weibo (2019). "Nanozyme: new horizons for responsive biomedical applications". Chemical Society Reviews. 48 (14): 3683–3704. doi:10.1039/c8cs00718g. PMC 6696937. PMID 31119258.
  95. ^ O’Mara, Peter B.; Wilde, Patrick; Benedetti, Tania M.; Andronescu, Corina; Cheong, Soshan; Gooding, J. Justin; Tilley, Richard D.; Schuhmann, Wolfgang (25 August 2019). "Cascade Reactions in Nanozymes: Spatially Separated Active Sites inside Ag-Core–Porous-Cu-Shell Nanoparticles for Multistep Carbon Dioxide Reduction to Higher Organic Molecules". Journal of the American Chemical Society. 141 (36): 14093–14097. doi:10.1021/jacs.9b07310. PMID 31448598.
  96. ^ Loynachan, Colleen N.; Soleimany, Ava P.; Dudani, Jaideep S.; Lin, Yiyang; Najer, Adrian; Bekdemir, Ahmet; Chen, Qu; Bhatia, Sangeeta N.; Stevens, Molly M. (2 September 2019). "Renal clearable catalytic gold nanoclusters for in vivo disease monitoring". Nature Nanotechnology. 14 (9): 883–890. Bibcode:2019NatNa..14..883L. doi:10.1038/s41565-019-0527-6. PMC 7045344. PMID 31477801.
  97. ^ Xi, Juqun; Wei, Gen; An, Lanfang; Xu, Zhuobin; Xu, Zhilong; Fan, Lei; Gao, Lizeng (3 October 2019). "Copper/Carbon Hybrid Nanozyme: Tuning Catalytic Activity by the Copper State for Antibacterial Therapy". Nano Letters. 19 (11): 7645–7654. Bibcode:2019NanoL..19.7645X. doi:10.1021/acs.nanolett.9b02242. PMID 31580681.
  98. ^ Zhao, Shuai; Duan, Hongxia; Yang, Yili; Yan, Xiyun; Fan, Kelong (November 2019). "Fenozyme Protects the Integrity of the Blood–Brain Barrier against Experimental Cerebral Malaria". Nano Letters. 19 (12): 8887–8895. doi:10.1021/acs.nanolett.9b03774. PMID 31671939.
  99. ^ Liang, Minmin; Yan, Xiyun (5 July 2019). "Nanozymes: From New Concepts, Mechanisms, and Standards to Applications". Accounts of Chemical Research. 52 (8): 2190–2200. doi:10.1021/acs.accounts.9b00140. PMID 31276379.
  100. ^ Xi, Zheng; Cheng, Xun; Gao, Zhuangqiang; Wang, Mengjing; Cai, Tong; Muzzio, Michelle; Davidson, Edwin; Chen, Ou; Jung, Yeonwoong; Sun, Shouheng; Xu, Ye; Xia, Xiaohu (10 December 2019). "Strain Effect in Palladium Nanostructures as Nanozymes". Nano Letters. 20 (1): 272–277. doi:10.1021/acs.nanolett.9b03782. PMID 31821008.
  101. ^ Wang, Chao; Wang, Manchao; Zhang, Wang; Liu, Jia; Lu, Mingju; Li, Kai; Lin, Yuqing (13 December 2019). "Integrating Prussian Blue Analog-Based Nanozyme and Online Visible Light Absorption Approach for Continuous Hydrogen Sulfide Monitoring in Brains of Living Rats". Analytical Chemistry. 92 (1): 662–667. doi:10.1021/acs.analchem.9b04931. PMID 31834784.
  102. ^ Tian, Zhimin; Yao, Tianzhu; Qu, Chaoyi; Zhang, Sai; Li, Xuhui; Qu, Yongquan (29 October 2019). "Photolyase-Like Catalytic Behavior of CeO2". Nano Letters. 19 (11): 8270–8277. Bibcode:2019NanoL..19.8270T. doi:10.1021/acs.nanolett.9b03836. PMID 31661288.
  103. ^ Cao, Fangfang; Zhang, Lu; You, Yawen; Zheng, Lirong; Ren, Jinsong; Qu, Xiaogang (12 February 2020). "An Enzyme‐Mimicking Single‐Atom Catalyst as an Efficient Multiple Reactive Oxygen and Nitrogen Species Scavenger for Sepsis Management". Angewandte Chemie. 132 (13): 5146–5153. doi:10.1002/ange.201912182.
  104. ^ Wang, Dongdong; Wu, Huihui; Phua, Soo Zeng Fiona; Yang, Guangbao; Qi Lim, Wei; Gu, Long; Qian, Cheng; Wang, Haibao; Guo, Zhen; Chen, Hongzhong; Zhao, Yanli (17 January 2020). "Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor". Nature Communications. 11 (1): 357. Bibcode:2020NatCo..11..357W. doi:10.1038/s41467-019-14199-7. PMC 6969186. PMID 31953423.
  105. ^ Sun, Duo; Pang, Xin; Cheng, Yi; Ming, Jiang; Xiang, Sijin; Zhang, Chang; Lv, Peng; Chu, Chengchao; Chen, Xiaolan; Liu, Gang; Zheng, Nanfeng (5 February 2020). "Ultrasound-Switchable Nanozyme Augments Sonodynamic Therapy against Multidrug-Resistant Bacterial Infection". ACS Nano. 14 (2): 2063–2076. doi:10.1021/acsnano.9b08667. PMID 32022535.
  106. ^ Sang, Yanjuan; Cao, Fangfang; Li, Wei; Zhang, Lu; You, Yawen; Deng, Qingqing; Dong, Kai; Ren, Jinsong; Qu, Xiaogang (26 February 2020). "Bioinspired Construction of a Nanozyme-Based H2O2 Homeostasis Disruptor for Intensive Chemodynamic Therapy". Journal of the American Chemical Society. 142 (11): 5177–5183. doi:10.1021/jacs.9b12873. PMID 32100536.
  107. ^ Zhen, Wenyao; Liu, Yang; Wang, Wei; Zhang, Mengchao; Hu, Wenxue; Jia, Xiaodan; Wang, Chao; Jiang, Xiue (1 April 2020). "Specific 'Unlocking' of a Nanozyme-Based Butterfly Effect To Break the Evolutionary Fitness of Chaotic Tumors". Angewandte Chemie International Edition. 59 (24): 9491–9497. doi:10.1002/anie.201916142. PMID 32100926.
  108. ^ Yan, Xiyun (2020). Nanozymology. Nanostructure Science and Technology. doi:10.1007/978-981-15-1490-6. ISBN 978-981-15-1489-0.[page needed]
  109. ^ Shi, Jinjin; Yu, Wenyan; Xu, Lihua; Yin, Na; Liu, Wei; Zhang, Kaixiang; Liu, Junjie; Zhang, Zhenzhong (2020). "Bioinspired Nanosponge for Salvaging Ischemic Stroke via Free Radical Scavenging and Self-Adapted Oxygen Regulating". Nano Letters. 20 (1): 780–789. Bibcode:2020NanoL..20..780S. doi:10.1021/acs.nanolett.9b04974. PMID 31830790.
  110. ^ Mikolajczak, Dorian J.; Berger, Allison A.; Koksch, Beate (2020). "Catalytically Active Peptide‐Gold Nanoparticle Conjugates: Prospecting for Artificial Enzymes". Angewandte Chemie. 132 (23): 8858–8867. doi:10.1002/ange.201908625.
  111. ^ Gao, Meng; Wang, Zhenzhen; Zheng, Huizhen; Wang, Li; Xu, Shujuan; Liu, Xi; Li, Wei; Pan, Yanxia; Wang, Weili; Cai, Xiaoming; Wu, Ren'an; Gao, Xingfa; Li, Ruibin (2020). "Two‐Dimensional Tin Selenide (Sn Se) Nanosheets Capable of Mimicking Key Dehydrogenases in Cellular Metabolism". Angewandte Chemie. 132 (9): 3647–3652. doi:10.1002/ange.201913035.
  112. ^ Li, Feng; Li, Shuai; Guo, Xiaocui; Dong, Yuhang; Yao, Chi; Liu, Yangping; Song, Yuguang; Tan, Xiaoli; Gao, Lizeng; Yang, Dayong (25 March 2020). "Chiral carbon dots mimicking topoisomerase I to enantioselectively mediate topological rearrangement of supercoiled DNA". Angewandte Chemie International Edition. doi:10.1002/anie.202002904. PMID 32212366.
  113. ^ Zhu, Yunyao; Wu, Jiangjiexing; Han, Lijun; Wang, Xiaoyu; Li, Wei; Guo, Hongchao; Wei, Hui (4 May 2020). "Nanozyme Sensor Arrays Based on Heteroatom-Doped Graphene for Detecting Pesticides". Analytical Chemistry. 92 (11): 7444–7452. doi:10.1021/acs.analchem.9b05110.
  114. ^ Huang, Rui; Li, Cheng-Hsuan; Cao-Milán, Roberto; He, Luke D.; Makabenta, Jessa Marie; Zhang, Xianzhi; Yu, Erlei; Rotello, Vincent M. (28 May 2020). "Polymer-Based Bioorthogonal Nanocatalysts for the Treatment of Bacterial Biofilms". Journal of the American Chemical Society. 142 (24): 10723–10729. doi:10.1021/jacs.0c01758.
  115. ^ Miao, Zhaohua; Jiang, Shanshan; Ding, Mengli; Sun, Siyuan; Ma, Yan; Younis, Muhammad Rizwan; He, Gang; Wang, Jingguo; Lin, Jing; Cao, Zhong; Huang, Peng; Zha, Zhengbao (29 April 2020). "Ultrasmall Rhodium Nanozyme with RONS Scavenging and Photothermal Activities for Anti-Inflammation and Antitumor Theranostics of Colon Diseases". Nano Letters. 20 (5): 3079–3089. doi:10.1021/acs.nanolett.9b05035.
  116. ^ Xu, Yuan; Xue, Jing; Zhou, Qing; Zheng, Yongjun; Chen, Xinghua; Liu, Songqin; Shen, Yanfei; Zhang, Yuanjian (8 June 2020). "Fe‐N‐C Nanozyme with Both Accelerated and Inhibited Biocatalytic Activities Capable of Accessing Drug‐Drug Interaction". Angewandte Chemie International Edition. doi:10.1002/anie.202003949.
  117. ^ Jiang, Yuyan; Zhao, Xuhui; Huang, Jiaguo; Li, Jingchao; Upputuri, Paul Kumar; Sun, He; Han, Xiao; Pramanik, Manojit; Miao, Yansong; Duan, Hongwei; Pu, Kanyi; Zhang, Ruiping (20 April 2020). "Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy". Nature Communications. 11 (1): 1–13. doi:10.1038/s41467-020-15730-x.
  118. ^ Liu, Tengfei; Xiao, Bowen; Xiang, Fei; Tan, Jianglin; Chen, Zhuo; Zhang, Xiaorong; Wu, Chengzhou; Mao, Zhengwei; Luo, Gaoxing; Chen, Xiaoyuan; Deng, Jun (3 June 2020). "Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases". Nature Communications. 11 (1): 1–16. doi:10.1038/s41467-020-16544-7.
  119. ^ He, Lizhen; Huang, Guanning; Liu, Hongxing; Sang, Chengcheng; Liu, Xinxin; Chen, Tianfeng (1 March 2020). "Highly bioactive zeolitic imidazolate framework-8–capped nanotherapeutics for efficient reversal of reperfusion-induced injury in ischemic stroke". Science Advances. 6 (12): eaay9751. doi:10.1126/sciadv.aay9751.
  120. ^ Xiao, Yi; Hong, Jaeyoung; Wang, Xiao; Chen, Tao; Hyeon, Taeghwan; Xu, Weilin (16 July 2020). "Revealing Kinetics of Two-Electron Oxygen Reduction Reaction at Single-Molecule Level". Journal of the American Chemical Society. doi:10.1021/jacs.0c06020.
  121. ^ Lin, Shichao; Cheng, Yuan; Zhang, He; Wang, Xiaoyu; Zhang, Yuye; Zhang, Yuanjian; Miao, Leiying; Zhao, Xiaozhi; Wei, Hui (29 August 2019). "Copper Tannic Acid Coordination Nanosheet: A Potent Nanozyme for Scavenging ROS from Cigarette Smoke". Small. 16 (27): 1902123. doi:10.1002/smll.201902123.
  122. ^ Gao, Liang; Zhang, Ya; Zhao, Lina; Niu, Wenchao; Tang, Yuhua; Gao, Fuping; Cai, Pengju; Yuan, Qing; Wang, Xiayan; Jiang, Huaidong; Gao, Xueyun (1 July 2020). "An artificial metalloenzyme for catalytic cancer-specific DNA cleavage and operando imaging". Science Advances. 6 (29): eabb1421. doi:10.1126/sciadv.abb1421.
  123. ^ Liu, Yufeng; Cheng, Yuan; Zhang, He; Zhou, Min; Yu, Yijun; Lin, Shichao; Jiang, Bo; Zhao, Xiaozhi; Miao, Leiying; Wei, Chuan-Wan; Liu, Quanyi; Lin, Ying-Wu; Du, Yan; Butch, Christopher J.; Wei, Hui (1 July 2020). "Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy". Science Advances. 6 (29): eabb2695. doi:10.1126/sciadv.abb2695.
  124. ^ Chen, Rui; Neri, Simona; Prins, Leonard J. (20 July 2020). "Enhanced catalytic activity under non-equilibrium conditions". Nature Nanotechnology: 1–7. doi:10.1038/s41565-020-0734-1.