Truncated pentagonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | 4.10.10 |
Schläfli symbol | t{5,4} |
Wythoff symbol | 2 4 | 5 2 5 5 | |
Coxeter diagram | or |
Symmetry group | [5,4], (*542) [5,5], (*552) |
Dual | Order-5 tetrakis square tiling |
Properties | Vertex-transitive |
In geometry, the truncated order-4 pentagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1{5,4}.
Uniform colorings
editA half symmetry [1+,4,5] = [5,5] coloring can be constructed with two colors of decagons. This coloring is called a truncated pentapentagonal tiling.
Symmetry
editThere is only one subgroup of [5,5], [5,5]+, removing all the mirrors. This symmetry can be doubled to 542 symmetry by adding a bisecting mirror.
Type | Reflective domains | Rotational symmetry |
---|---|---|
Index | 1 | 2 |
Diagram | ||
Coxeter (orbifold) |
[5,5] = = (*552) |
[5,5]+ = = (552) |
Related polyhedra and tiling
edit*n42 symmetry mutation of truncated tilings: 4.2n.2n | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry *n42 [n,4] |
Spherical | Euclidean | Compact hyperbolic | Paracomp. | |||||||
*242 [2,4] |
*342 [3,4] |
*442 [4,4] |
*542 [5,4] |
*642 [6,4] |
*742 [7,4] |
*842 [8,4]... |
*∞42 [∞,4] | ||||
Truncated figures |
|||||||||||
Config. | 4.4.4 | 4.6.6 | 4.8.8 | 4.10.10 | 4.12.12 | 4.14.14 | 4.16.16 | 4.∞.∞ | |||
n-kis figures |
|||||||||||
Config. | V4.4.4 | V4.6.6 | V4.8.8 | V4.10.10 | V4.12.12 | V4.14.14 | V4.16.16 | V4.∞.∞ |
Uniform pentagonal/square tilings | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry: [5,4], (*542) | [5,4]+, (542) | [5+,4], (5*2) | [5,4,1+], (*552) | ||||||||
{5,4} | t{5,4} | r{5,4} | 2t{5,4}=t{4,5} | 2r{5,4}={4,5} | rr{5,4} | tr{5,4} | sr{5,4} | s{5,4} | h{4,5} | ||
Uniform duals | |||||||||||
V54 | V4.10.10 | V4.5.4.5 | V5.8.8 | V45 | V4.4.5.4 | V4.8.10 | V3.3.4.3.5 | V3.3.5.3.5 | V55 |
Uniform pentapentagonal tilings | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry: [5,5], (*552) | [5,5]+, (552) | ||||||||||
= |
= |
= |
= |
= |
= |
= |
= | ||||
Order-5 pentagonal tiling {5,5} |
Truncated order-5 pentagonal tiling t{5,5} |
Order-4 pentagonal tiling r{5,5} |
Truncated order-5 pentagonal tiling 2t{5,5} = t{5,5} |
Order-5 pentagonal tiling 2r{5,5} = {5,5} |
Tetrapentagonal tiling rr{5,5} |
Truncated order-4 pentagonal tiling tr{5,5} |
Snub pentapentagonal tiling sr{5,5} | ||||
Uniform duals | |||||||||||
Order-5 pentagonal tiling V5.5.5.5.5 |
V5.10.10 | Order-5 square tiling V5.5.5.5 |
V5.10.10 | Order-5 pentagonal tiling V5.5.5.5.5 |
V4.5.4.5 | V4.10.10 | V3.3.5.3.5 |
References
edit- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
See also
editWikimedia Commons has media related to Uniform tiling 4-10-10.
External links
edit- Weisstein, Eric W. "Hyperbolic tiling". MathWorld.
- Weisstein, Eric W. "Poincaré hyperbolic disk". MathWorld.
- Hyperbolic and Spherical Tiling Gallery
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch