# 500 (number)

(Redirected from 502 (number))

500 (five hundred) is the natural number following 499 and preceding 501.

 ← 499 500 501 →
Cardinalfive hundred
Ordinal500th
(five hundredth)
Factorization22 × 53
Greek numeralΦ´
Roman numeralD
Binary1111101002
Ternary2001123
Octal7648
Duodecimal35812

## Mathematical properties

500 = 22 × 53. It is an Achilles number and an Harshad number, meaning divisible by the sum of its digits. It is the number of planar partitions of 10.[1]

## Other fields

Five hundred is also

## Slang names

• Monkey (UK slang for £500; USA slang for \$500)[2]

## Integers from 501 to 599

### 500s

#### 501

501 = 3 × 167. It is:

• the sum of the first 18 primes (a term of the sequence ).
• palindromic in bases 9 (6169) and 20 (15120).

#### 502

• 502 = 2 × 251
• vertically symmetric number (sequence A053701 in the OEIS)

503 is:

#### 504

504 = 23 × 32 × 7. It is:

${\displaystyle \sum _{n=0}^{10}{504}^{n}}$  is prime[11]

#### 506

506 = 2 × 11 × 23. It is:

#### 507

• 507 = 3 × 132 = 232 - 23 + 1, which makes it a central polygonal number[14]

#### 508

• 508 = 22 × 127, sum of four consecutive primes (113 + 127 + 131 + 137), number of graphical forest partitions of 30,[15] since 508 = 222 + 22 + 2 it is the maximum number of regions into which 23 intersecting circles divide the plane.[16]

509 is:

### 510s

#### 510

510 = 2 × 3 × 5 × 17. It is:

• the sum of eight consecutive primes (47 + 53 + 59 + 61 + 67 + 71 + 73 + 79).
• the sum of ten consecutive primes (31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71).
• the sum of twelve consecutive primes (19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67).
• a nontotient.
• a sparsely totient number.[18]
• the number of nonempty proper subsets of an 9-element set.[19]

#### 511

511 = 7 × 73. It is:

#### 512

512 = 83 = 29. It is:

#### 513

513 = 33 × 19. It is:

#### 514

514 = 2 × 257, it is:

#### 515

515 = 5 × 103, it is:

• the sum of nine consecutive primes (41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73).
• the number of complete compositions of 11.[22]

#### 516

516 = 22 × 3 × 43, it is:

#### 517

517 = 11 × 47, it is:

• the sum of five consecutive primes (97 + 101 + 103 + 107 + 109).
• a Smith number.[24]

#### 518

518 = 2 × 7 × 37, it is:

• = 51 + 12 + 83 (a property shared with 175 and 598).
• a sphenic number.
• a nontotient.
• an untouchable number.[23]
• palindromic and a repdigit in bases 6 (22226) and 36 (EE36).

#### 519

519 = 3 × 173, it is:

• the sum of three consecutive primes (167 + 173 + 179)
• palindromic in bases 9 (6369) and 12 (37312)
• a D-number.[25]

### 520s

#### 520

520 = 23 × 5 × 13. It is:

#### 521

521 is:

• a Lucas prime.[26]
• A Mersenne exponent, i.e. 2521−1 is prime.
• a Chen prime.
• an Eisenstein prime with no imaginary part.
• palindromic in bases 11 (43411) and 20 (16120).

#### 522

522 = 2 × 32 × 29. It is:

• the sum of six consecutive primes (73 + 79 + 83 + 89 + 97 + 101).
• a repdigit in bases 28 (II28) and 57 (9957).
• number of series-parallel networks with 8 unlabeled edges.[28]

523 is:

#### 524

524 = 22 × 131

• number of partitions of 44 into powers of 2[30]

#### 525

525 = 3 × 52 × 7. It is:

• palindromic in base 10 (52510).
• the number of scan lines in the NTSC television standard.
• a self number.

#### 526

526 = 2 × 263, centered pentagonal number,[31] nontotient, Smith number[24]

#### 527

527 = 17 × 31. it is:

• palindromic in base 15 (25215)
• number of diagonals in a 34-gon[32]
• also, the section of the US Tax Code regulating soft money political campaigning (see 527 groups)

#### 528

528 = 24 × 3 × 11. It is:

#### 529

529 = 232. It is:

### 530s

#### 530

530 = 2 × 5 × 53. It is:

#### 531

531 = 32 × 59. It is:

• palindromic in base 12 (38312).
• number of symmetric matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to 6[34]

#### 532

532 = 22 × 7 × 19. It is:

#### 533

533 = 13 × 41. It is:

• the sum of three consecutive primes (173 + 179 + 181).
• the sum of five consecutive primes (101 + 103 + 107 + 109 + 113).
• palindromic in base 19 (19119).
• generalized octagonal number.[36]

#### 534

534 = 2 × 3 × 89. It is:

• a sphenic number.
• the sum of four consecutive primes (127 + 131 + 137 + 139).
• a nontotient.
• palindromic in bases 5 (41145) and 14 (2A214).
${\displaystyle \sum _{n=0}^{10}{534}^{n}}$  is prime[37]

#### 535

535 = 5 × 107. It is:

${\displaystyle 34n^{3}+51n^{2}+27n+5}$  for ${\displaystyle n=2}$ ; this polynomial plays an essential role in Apéry's proof that ${\displaystyle \zeta (3)}$  is irrational.

535 is used as an abbreviation for May 35, which is used in China instead of June 4 to evade censorship by the Chinese government of references on the Internet to the Tiananmen Square protests of 1989.[38]

#### 536

536 = 23 × 67. It is:

• the number of ways to arrange the pieces of the ostomachion into a square, not counting rotation or reflection.
• the number of 1's in all partitions of 23 into odd parts[39]
• a refactorable number.[10]
• the lowest happy number beginning with the digit 5.

#### 537

537 = 3 × 179, Mertens function (537) = 0, Blum integer, D-number[40]

#### 538

538 = 2 × 269. It is:

#### 539

539 = 72 × 11

${\displaystyle \sum _{n=0}^{10}{539}^{n}}$  is prime[41]

### 540s

#### 540

540 = 22 × 33 × 5. It is:

#### 541

541 is:

Mertens function(541) = 0. 4541 - 3541 is prime.

#### 542

542 = 2 × 271. It is:

#### 543

543 = 3 × 181; palindromic in bases 11 (45411) and 12 (39312), D-number.[48]

${\displaystyle \sum _{n=0}^{10}{543}^{n}}$  is prime[49]

#### 544

544 = 25 × 17. Take a grid of 2 times 5 points. There are 14 points on the perimeter. Join every pair of the perimeter points by a line segment. The lines do not extend outside the grid. 544 is the number of regions formed by these lines.

#### 545

545 = 5 × 109. It is:

#### 546

546 = 2 × 3 × 7 × 13. It is:

• the sum of eight consecutive primes (53 + 59 + 61 + 67 + 71 + 73 + 79 + 83).
• palindromic in bases 4 (202024), 9 (6669), and 16 (22216).
• a repdigit in bases 9 and 16.
• 546! − 1 is prime.

547 is:

#### 548

548 = 22 × 137. It is:

Also, every positive integer is the sum of at most 548 ninth powers;

#### 549

549 = 32 × 61, it is:

• a repdigit in bases 13 (33313) and 60 (9960).
• φ(549) = φ(σ(549)).[54]

### 550s

#### 550

550 = 2 × 52 × 11. It is:

#### 551

551 = 19 × 29. It is:

• It is the number of mathematical trees on 12 unlabeled nodes. [57]
• the sum of three consecutive primes (179 + 181 + 191).
• palindromic in base 22 (13122).
• the SMTP status code meaning user is not local

#### 552

552 = 23 × 3 × 23. It is:

• the sum of six consecutive primes (79 + 83 + 89 + 97 + 101 + 103).
• the sum of ten consecutive primes (37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73).
• a pronic number.[13]
• an untouchable number.[23]
• palindromic in base 19 (1A119).
• the model number of U-552.
• the SMTP status code meaning requested action aborted because the mailbox is full.

#### 553

553 = 7 × 79. It is:

• the sum of nine consecutive primes (43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79).
• central polygonal number.[58]
• the model number of U-553.
• the SMTP status code meaning requested action aborted because of faulty mailbox name.

#### 554

554 = 2 × 277. It is:

• a nontotient.
• a 2-Knödel number
• the SMTP status code meaning transaction failed.

Mertens function(554) = 6, a record high that stands until 586.

#### 555

555 = 3 × 5 × 37 is:

• a sphenic number.
• palindromic in bases 9 (6769), 10 (55510), and 12 (3A312).
• a repdigit in bases 10 and 36.
• φ(555) = φ(σ(555)).[59]

#### 556

556 = 22 × 139. It is:

• the sum of four consecutive primes (131 + 137 + 139 + 149).
• an untouchable number, because it is never the sum of the proper divisors of any integer.[23]
• a happy number.
• the model number of U-556; 5.56×45mm NATO cartridge.

#### 557

557 is:

• a prime number.
• a Chen prime.
• an Eisenstein prime with no imaginary part.
• the number of parallelogram polyominoes with 9 cells.[60]

#### 558

558 = 2 × 32 × 31. It is:

• a nontotient.
• a repdigit in bases 30 (II30) and 61 (9961).
• The sum of the largest prime factors of the first 558 is itself divisible by 558 (the previous such number is 62, the next is 993).
• in the title of the Star Trek: Deep Space Nine episode "The Siege of AR-558"

#### 559

559 = 13 × 43. It is:

• the sum of five consecutive primes (103 + 107 + 109 + 113 + 127).
• the sum of seven consecutive primes (67 + 71 + 73 + 79 + 83 + 89 + 97).
• a nonagonal number.[61]
• a centered cube number.[62]
• palindromic in base 18 (1D118).
• the model number of U-559.

### 560s

#### 560

560 = 24 × 5 × 7. It is:

• a tetrahedral number.[63]
• a refactorable number.
• palindromic in bases 3 (2022023) and 6 (23326).
• the number of diagonals in a 35-gon[64]

#### 561

561 = 3 × 11 × 17. It is:

#### 562

562 = 2 × 281. It is:

• a Smith number.[24]
• an untouchable number.[23]
• the sum of twelve consecutive primes (23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71).
• palindromic in bases 4 (203024), 13 (34313), 14 (2C214), 16 (23216), and 17 (1G117).
• a lazy caterer number (sequence A000124 in the OEIS).
• the number of Native American (including Alaskan) Nations, or "Tribes," recognized by the USA government.

563 is:

#### 564

564 = 22 × 3 × 47. It is:

• the sum of a twin prime (281 + 283).
• a refactorable number.
• palindromic in bases 5 (42245) and 9 (6869).
• number of primes <= 212.[71]

#### 565

565 = 5 × 113. It is:

• the sum of three consecutive primes (181 + 191 + 193).
• a member of the Mian–Chowla sequence.[72]
• a happy number.
• palindromic in bases 10 (56510) and 11 (47411).

#### 566

566 = 2 × 283. It is:

#### 567

567 = 34 × 7. It is:

• palindromic in base 12 (3B312).
${\displaystyle \sum _{n=0}^{10}{567}^{n}}$  is prime[73]

#### 568

568 = 23 × 71. It is:

• the sum of the first nineteen primes (a term of the sequence ).
• a refactorable number.
• palindromic in bases 7 (14417) and 21 (16121).
• the smallest number whose seventh power is the sum of 7 seventh powers.
• the room number booked by Benjamin Braddock in the 1967 film The Graduate.
• the number of millilitres in an imperial pint.
• the name of the Student Union bar at Imperial College London

#### 569

569 is:

• a prime number.
• a Chen prime.
• an Eisenstein prime with no imaginary part.
• a strictly non-palindromic number.[69]

### 570s

#### 570

570 = 2 × 3 × 5 × 19. It is:

• a triangular matchstick number[74]
• a balanced number[75]

#### 571

571 is:

• a prime number.
• a Chen prime.
• a centered triangular number.[21]
• the model number of U-571 which appeared in the 2000 movie U-571

#### 572

572 = 22 × 11 × 13. It is:

#### 573

573 = 3 × 191. It is:

#### 574

574 = 2 × 7 × 41. It is:

• a sphenic number.
• a nontotient.
• palindromic in base 9 (7079).
• number of partitions of 27 that do not contain 1 as a part.[76]

#### 575

575 = 52 × 23. It is:

And the sum of the squares of the first 575 primes is divisible by 575.[78]

#### 576

576 = 26 × 32 = 242. It is:

• the sum of four consecutive primes (137 + 139 + 149 + 151).
• a highly totient number.[79]
• a Smith number.[24]
• an untouchable number.[23]
• palindromic in bases 11 (48411), 14 (2D214), and 23 (12123).
• four-dozen sets of a dozen, which makes it 4 gross.
• a cake number.
• the number of parts in all compositions of 8.[80]

577 is:

#### 578

578 = 2 × 172. It is:

• a nontotient.
• palindromic in base 16 (24216).
• area of a square with diagonal 34[82]

#### 579

579 = 3 × 193; it is a ménage number,[83] and a semiprime.

### 580s

#### 580

580 = 22 × 5 × 29. It is:

• the sum of six consecutive primes (83 + 89 + 97 + 101 + 103 + 107).
• palindromic in bases 12 (40412) and 17 (20217).

#### 581

581 = 7 × 83. It is:

• the sum of three consecutive primes (191 + 193 + 197).
• a Blum integer

#### 582

582 = 2 × 3 × 97. It is:

• a sphenic number.
• the sum of eight consecutive primes (59 + 61 + 67 + 71 + 73 + 79 + 83 + 89).
• a nontotient.
• a vertically symmetric number (sequence A053701 in the OEIS).

#### 583

583 = 11 × 53. It is:

• palindromic in base 9 (7179).
• number of compositions of 11 whose run-lengths are either weakly increasing or weakly decreasing[84]

#### 584

584 = 23 × 73. It is:

• an untouchable number.[23]
• the sum of totient function for first 43 integers.
• a refactorable number.

#### 585

585 = 32 × 5 × 13. It is:

• palindromic in bases 2 (10010010012), 8 (11118), and 10 (58510).
• a repdigit in bases 8, 38, 44, and 64.
• the sum of powers of 8 from 0 to 3.

When counting in binary with fingers, expressing 585 as 1001001001, results in the isolation of the index and little fingers of each hand, "throwing up the horns".

#### 586

586 = 2 × 293.

• Mertens function(586) = 7 a record high that stands until 1357.
• 2-Knödel number.
• it is the number of several popular personal computer processors (such as the Intel pentium).

#### 587

587 is:

• a prime number.
• safe prime.[3]
• a Chen prime.
• an Eisenstein prime with no imaginary part.
• the sum of five consecutive primes (107 + 109 + 113 + 127 + 131).
• palindromic in bases 11 (49411) and 15 (29215).
• the outgoing port for email message submission.
• a prime index prime.

#### 588

588 = 22 × 3 × 72. It is:

• a Smith number.[24]
• palindromic in base 13 (36313).

#### 589

589 = 19 × 31. It is:

### 590s

#### 590

590 = 2 × 5 × 59. It is:

#### 591

591 = 3 × 197, D-number[85]

#### 592

592 = 24 × 37. It is:

• palindromic in bases 9 (7279) and 12 (41412).

#### 593

593 is:

• a prime number.
• a Sophie Germain prime.
• the sum of seven consecutive primes (71 + 73 + 79 + 83 + 89 + 97 + 101).
• the sum of nine consecutive primes (47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 83).
• an Eisenstein prime with no imaginary part.
• a balanced prime.[68]
• a Leyland prime.
• a member of the Mian–Chowla sequence.[72]
• strictly non-palindromic prime.[69]

#### 594

594 = 2 × 33 × 11. It is:

• the sum of ten consecutive primes (41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79).
• a nontotient.
• palindromic in bases 5 (43345) and 16 (25216).
• the number of diagonals in a 36-gon.[86]
• a balanced number.[87]

#### 595

595 = 5 × 7 × 17. It is:

#### 596

596 = 22 × 149. It is:

• the sum of four consecutive primes (139 + 149 + 151 + 157).
• a nontotient.
• a lazy caterer number (sequence A000124 in the OEIS).

#### 597

597 = 3 × 199. It is:

#### 598

598 = 2 × 13 × 23 = 51 + 92 + 83. It is:

#### 599

599 is:

• a prime number.
• a Chen prime.
• an Eisenstein prime with no imaginary part.
• a prime index prime.

## References

1. ^ Sloane, N. J. A. (ed.). "Sequence A000219 (Number of planar partitions (or plane partitions) of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
2. ^ Evans, I.H., Brewer's Dictionary of Phrase and Fable, 14th ed., Cassell, 1990, ISBN 0-304-34004-9
3. ^ a b c Sloane, N. J. A. (ed.). "Sequence A005385 (Safe primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
4. ^ that is, a term of the sequence
5. ^ that is, the first term of the sequence
6. ^ since 503+2 is a product of two primes, 5 and 101
7. ^ since it is a prime which is congruent to 2 modulo 3.
8. ^ Sloane, N. J. A. (ed.). "Sequence A001606 (Indices of prime Lucas numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
9. ^ Sloane, N. J. A. (ed.). "Sequence A000073 (Tribonacci numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
10. ^ a b c Sloane, N. J. A. (ed.). "Sequence A033950 (Refactorable numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
11. ^ Sloane, N. J. A. (ed.). "Sequence A162862 (Numbers n such that n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
12. ^ Sloane, N. J. A. (ed.). "Sequence A000330 (Square pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
13. ^ a b Sloane, N. J. A. (ed.). "Sequence A002378 (Oblong (or promic, pronic, or heteromecic) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
14. ^ Sloane, N. J. A. (ed.). "Sequence A002061". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
15. ^ Sloane, N. J. A. (ed.). "Sequence A000070". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
16. ^ Sloane, N. J. A. (ed.). "Sequence A014206". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
17. ^ Sloane, N. J. A. (ed.). "Sequence A100827 (Highly cototient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
18. ^ Sloane, N. J. A. (ed.). "Sequence A036913 (Sparsely totient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
19. ^ Sloane, N. J. A. (ed.). "Sequence A000918". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
20. ^ Sloane, N. J. A. (ed.). "Sequence A061209 (Numbers which are the cubes of their digit sum)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
21. ^ a b Sloane, N. J. A. (ed.). "Sequence A005448 (Centered triangular numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
22. ^ Sloane, N. J. A. (ed.). "Sequence A107429 (Number of complete compositions of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
23. Sloane, N. J. A. (ed.). "Sequence A005114 (Untouchable numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
24. Sloane, N. J. A. (ed.). "Sequence A006753 (Smith numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
25. ^ Sloane, N. J. A. (ed.). "Sequence A033553 (3-Knödel numbers or D-numbers: numbers n > 3 such that n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
26. ^ Sloane, N. J. A. (ed.). "Sequence A005479 (Prime Lucas numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
27. ^ Dr. Kirkby (May 19, 2021). "Many more twin primes below Mersenne exponents than above Mersenne exponents". Mersenne Forum.
28. ^
29. ^ Sloane, N. J. A. (ed.). "Sequence A348699 (Primes with a prime number of prime digits)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
30. ^
31. ^ Sloane, N. J. A. (ed.). "Sequence A005891 (Centered pentagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
32. ^ Sloane, N. J. A. (ed.). "Sequence A000096". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
33. ^ Sloane, N. J. A. (ed.). "Sequence A016754 (Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
34. ^
35. ^ a b Sloane, N. J. A. (ed.). "Sequence A000326 (Pentagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
36. ^ Sloane, N. J. A. (ed.). "Sequence A001082 (Generalized octagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
37. ^ Sloane, N. J. A. (ed.). "Sequence A162862 (Numbers n such that n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
38. ^ Larmer, Brook (October 26, 2011). "Where an Internet Joke Is Not Just a Joke". New York Times. Retrieved November 1, 2011.
39. ^
40. ^ Sloane, N. J. A. (ed.). "Sequence A033553 (3-Knödel numbers or D-numbers: numbers n > 3 such that n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
41. ^ Sloane, N. J. A. (ed.). "Sequence A162862 (Numbers n such that n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
42. ^ Sloane, N. J. A. (ed.). "Sequence A001107 (10-gonal (or decagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
43. ^ Snorri Sturluson. "Prose Edda". p. 107.
44. ^ Snorri Sturluson. "Prose Edda". p. 82.
45. ^ Sloane, N. J. A. (ed.). "Sequence A031157 (Numbers that are both lucky and prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
46. ^ Sloane, N. J. A. (ed.). "Sequence A003154 (Centered 12-gonal numbers. Also star numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
47. ^ Sloane, N. J. A. (ed.). "Sequence A002088". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
48. ^ Sloane, N. J. A. (ed.). "Sequence A033553 (3-Knödel numbers or D-numbers: numbers n > 3 such that n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
49. ^ Sloane, N. J. A. (ed.). "Sequence A162862 (Numbers n such that n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
50. ^ Sloane, N. J. A. (ed.). "Sequence A001844 (Centered square numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
51. ^ Sloane, N. J. A. (ed.). "Sequence A002407 (Cuban primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
52. ^ Sloane, N. J. A. (ed.). "Sequence A003215 (Hex (or centered hexagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
53. ^ Sloane, N. J. A. (ed.). "Sequence A069099 (Centered heptagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
54. ^ Sloane, N. J. A. (ed.). "Sequence A006872". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
55. ^ Sloane, N. J. A. (ed.). "Sequence A002411 (Pentagonal pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
56. ^ a b Sloane, N. J. A. (ed.). "Sequence A071395 (Primitive abundant numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
57. ^ "Sloane's A000055: Number of trees with n unlabeled nodes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Archived from the original on 2010-11-29. Retrieved 2021-12-19.
58. ^ Sloane, N. J. A. (ed.). "Sequence A002061". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
59. ^ Sloane, N. J. A. (ed.). "Sequence A006872". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
60. ^
61. ^ Sloane, N. J. A. (ed.). "Sequence A001106 (9-gonal (or enneagonal or nonagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
62. ^ Sloane, N. J. A. (ed.). "Sequence A005898 (Centered cube numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
63. ^ Sloane, N. J. A. (ed.). "Sequence A000292 (Tetrahedral numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
64. ^ Sloane, N. J. A. (ed.). "Sequence A000096". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
65. ^ Sloane, N. J. A. (ed.). "Sequence A000384 (Hexagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
66. ^ Higgins, Peter (2008). Number Story: From Counting to Cryptography. New York: Copernicus. p. 14. ISBN 978-1-84800-000-1.
67. ^ Sloane, N. J. A. (ed.). "Sequence A007540 (Wilson primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
68. ^ a b Sloane, N. J. A. (ed.). "Sequence A006562 (Balanced primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
69. ^ a b c Sloane, N. J. A. (ed.). "Sequence A016038 (Strictly non-palindromic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
70. ^ Sloane, N. J. A. (ed.). "Sequence A059802 (Numbers k such that 5^k - 4^k is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
71. ^ Sloane, N. J. A. (ed.). "Sequence A007053". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
72. ^ a b Sloane, N. J. A. (ed.). "Sequence A005282 (Mian-Chowla sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
73. ^ Sloane, N. J. A. (ed.). "Sequence A162862 (Numbers n such that n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
74. ^ Sloane, N. J. A. (ed.). "Sequence A045943". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
75. ^
76. ^ Sloane, N. J. A. (ed.). "Sequence A002865 (Number of partitions of n that do not contain 1 as a part)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
77. ^ Sloane, N. J. A. (ed.). "Sequence A001845 (Centered octahedral numbers (crystal ball sequence for cubic lattice))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
78. ^ Sloane, N. J. A. (ed.). "Sequence A111441 (Numbers k such that the sum of the squares of the first k primes is divisible by k)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
79. ^ Sloane, N. J. A. (ed.). "Sequence A097942 (Highly totient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
80. ^ Sloane, N. J. A. (ed.). "Sequence A001792". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
81. ^ Sloane, N. J. A. (ed.). "Sequence A080076 (Proth primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
82. ^ Sloane, N. J. A. (ed.). "Sequence A001105". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
83. ^ Sloane, N. J. A. (ed.). "Sequence A000179 (Ménage numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
84. ^ Sloane, N. J. A. (ed.). "Sequence A332835 (Number of compositions of n whose run-lengths are either weakly increasing or weakly decreasing)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
85. ^ Sloane, N. J. A. (ed.). "Sequence A033553 (3-Knödel numbers or D-numbers: numbers n > 3 such that n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
86. ^ Sloane, N. J. A. (ed.). "Sequence A000096". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
87. ^
88. ^ Sloane, N. J. A. (ed.). "Sequence A060544 (Centered 9-gonal (also known as nonagonal or enneagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.