Wikipedia:Reference desk/Archives/Mathematics/2014 September 26

Mathematics desk
< September 25 << Aug | September | Oct >> September 27 >
Welcome to the Wikipedia Mathematics Reference Desk Archives
The page you are currently viewing is a transcluded archive page. While you can leave answers for any questions shown below, please ask new questions on one of the current reference desk pages.


September 26 edit

Approximation of the cosine function edit

In the Cosine article on Mathworld, an interesting approximation is mentioned:

A close approximation to cos(pix/2) for x in [0,1] is

 

(Hardy 1959), where the difference between cos(pix/2) and Hardy's approximation is plotted above.

However, all it mentions is Hardy's work, and the work cited does not contain any other information about this approximation! The derivation and/or potential applications for this would be interesting, but no other information about this can be found on the internet. Do you know any other sources/information about this? Llightex (talk) 21:05, 26 September 2014 (UTC)[reply]

Here is a way you might reverse engineer the formula, though I have no idea how Hardy derived it. Let C(x) = cos(πx/2). We know from the Taylor series that C(x) = 1 - x2/constant + other terms. Rewrite this as C(x) = 1 - x2/K(x) where K is to be determined. We also know C(1) = 0 from which K(1)=1. Expand K at x=1 to get K(x)=1+constant⋅(x-1)+higher terms. Again, collecting the the constant and higher terms into a single function, write K(x)=1+(x-1)L(x). At this point you can get a fairly good approximation for C by plugging in a linear approximation for L. But we also know C(1/2)=√2/2 which would imply (after some computation) L(1/2) = 1 - √(1/2). So perhaps a better approximation of L would be L(x)≈ 1 - √(1/2+m(x-1/2)) for some constant m. If you plug in C(2/3)=1/2 you get m=-1/3 which produces the approximation given, but other values of m might work just as well or better. I found m=-.337 gives the lowest mean square error on the interval. Note that there are points in the derivation where different choices could be made, for example you could write C(x) = 1 - x2⋅K(x) or K(x)=1+(x-1)/L(x). It might be fun to explore these variations to see how they compare with the one given. --RDBury (talk) 00:01, 27 September 2014 (UTC)[reply]