Lemma 4: {\displaystyle {\mbox{Lemma 4:}}\ }
Let P ( x ) = a 0 x μ + a 1 x μ − 1 + ⋯ + a μ − 1 x + a μ be a polynomial of degree μ > 0 {\displaystyle {\mbox{Let }}P(x)=a_{0}x^{\mu }+a_{1}x^{\mu -1}+\dots +a_{\mu -1}x+a_{\mu }{\mbox{ be a polynomial of degree }}\mu >0} where a 0 ≠ 0 and a μ ≠ 0. {\displaystyle {\mbox{ where }}a_{0}\neq 0{\mbox{ and }}a_{\mu }\neq 0.\;\;} Let {\displaystyle \;\;{\mbox{Let }}\;} ( ξ μ ) {\displaystyle (\xi _{\mu })\;} be the sequence {\displaystyle {\mbox{ be the sequence }}\;} consisting of the negatives {\displaystyle {\mbox{consisting of the negatives }}\;} of the roots of P ( x ) . {\displaystyle {\mbox{of the roots of }}P(x).\;}
Then for a nonnegative integer n , {\displaystyle {\mbox{ Then for a nonnegative integer }}\;n,\;} P ( n ) = a μ ( ( 1 + ξ μ ) ) n ( ( ξ μ ) ) n . {\displaystyle \;\;P(n)=a_{\mu }{\frac {((1+\xi _{\mu }))_{n}}{((\xi _{\mu }))_{n}}}.}
Proof: {\displaystyle {\mbox{Proof:}}\;}
From the factorization {\displaystyle {\mbox{From the factorization }}\;} P ( x ) = a 0 ( x + ξ 1 ) ( x + ξ 2 ) … ( x + ξ μ ) {\displaystyle P(x)=a_{0}(x+\xi _{1})(x+\xi _{2})\dots (x+\xi _{\mu })\;} we see that {\displaystyle {\mbox{we see that }}\;}
Now {\displaystyle {\mbox{ Now}}\;}
Therefore, {\displaystyle {\mbox{ Therefore, }}\;}
{\displaystyle {\mbox{ }}\;} {\displaystyle {\mbox{ }}\;} {\displaystyle {\mbox{ }}\;} {\displaystyle {\mbox{ }}\;} {\displaystyle {\mbox{ }}\;}