Starting from the the Cauchy's equations:
∇
⋅
σ
=
0
{\displaystyle \displaystyle {\boldsymbol {\nabla }}\cdot {\boldsymbol {\sigma }}=\mathbf {0} }
(1)
we follow the procedures of Kochmann, [ 1] , express the Cauchy' equations in the polar coordinates:
(
λ
+
μ
)
(
r
2
u
r
,
r
r
+
r
u
r
,
r
−
u
r
+
r
u
θ
,
r
θ
−
u
θ
,
θ
)
+
μ
(
r
2
u
r
,
r
r
+
r
u
r
,
r
−
u
r
+
u
r
,
θ
θ
−
2
u
θ
,
θ
)
=
0
{\displaystyle \displaystyle (\lambda +\mu )(r^{2}u_{r,rr}+ru_{r,r}-u_{r}+ru_{\theta ,r\theta }-u_{\theta ,\theta })+\mu (r^{2}u_{r,rr}+ru_{r,r}-u_{r}+u_{r,\theta \theta }-2u_{\theta ,\theta })=0}
(2)
(
λ
+
μ
)
(
r
u
r
,
r
θ
+
u
r
,
θ
+
u
θ
,
θ
θ
)
+
μ
(
r
2
u
θ
,
r
r
+
r
u
θ
,
r
+
2
u
r
,
θ
+
u
θ
,
θ
θ
−
u
θ
)
=
0
{\displaystyle \displaystyle (\lambda +\mu )(ru_{r,r\theta }+u_{r,\theta }+u_{\theta ,\theta \theta })+\mu (r^{2}u_{\theta ,rr}+ru_{\theta ,r}+2u_{r,\theta }+u_{\theta ,\theta \theta }-u_{\theta })=0}
(3)
and assume the separable form of the solutions
u
r
=
f
(
r
)
e
i
m
θ
,
u
θ
=
g
(
r
)
e
i
m
θ
{\displaystyle \displaystyle u_{r}=f(r)e^{im\theta },\qquad u_{\theta }=g(r)e^{im\theta }}
(4)
For each value of
m
{\displaystyle \displaystyle m}
, we have a set of solutions
f
(
r
)
=
f
m
(
r
)
,
g
(
r
)
=
g
m
(
r
)
{\displaystyle \displaystyle f(r)=f_{m}(r),g(r)=g_{m}(r)}
. Since solutions
u
r
,
u
θ
{\displaystyle \displaystyle u_{r},\quad u_{\theta }}
are
2
π
{\displaystyle \displaystyle 2\pi }
periodic of
θ
{\displaystyle \displaystyle \theta }
,
m
{\displaystyle \displaystyle m}
must be an integer and hence
m
{\displaystyle \displaystyle m}
ranges from
−
∞
{\displaystyle \displaystyle -\infty }
to
∞
{\displaystyle \displaystyle \infty }
. The general solutions would be:
u
r
=
∑
m
=
−
∞
∞
f
m
(
r
)
e
i
m
θ
,
u
θ
=
∑
m
=
−
∞
∞
g
m
(
r
)
e
i
m
θ
{\displaystyle \displaystyle u_{r}=\sum _{m=-\infty }^{\infty }f_{m}(r)e^{im\theta },u_{\theta }=\sum _{m=-\infty }^{\infty }g_{m}(r)e^{im\theta }}
(5)
On the other hand, displacements must be real, i.e
u
¯
r
=
u
r
,
u
¯
θ
=
u
θ
{\displaystyle \displaystyle {\overline {u}}_{r}=u_{r},\quad {\overline {u}}_{\theta }=u_{\theta }\quad }
or
∑
m
=
−
∞
∞
f
m
(
r
)
e
i
m
θ
=
∑
m
=
−
∞
∞
f
m
(
r
)
¯
e
−
i
m
θ
,
∑
m
=
−
∞
∞
g
m
(
r
)
e
i
m
θ
=
∑
m
=
−
∞
∞
g
m
(
r
)
¯
e
−
i
m
θ
{\displaystyle \displaystyle \sum _{m=-\infty }^{\infty }f_{m}(r)e^{im\theta }=\sum _{m=-\infty }^{\infty }{\overline {f_{m}(r)}}e^{-im\theta },\quad \sum _{m=-\infty }^{\infty }g_{m}(r)e^{im\theta }=\sum _{m=-\infty }^{\infty }{\overline {g_{m}(r)}}e^{-im\theta }}
(6)
It is easy to see that
∑
m
=
−
∞
∞
f
m
(
r
)
¯
e
−
i
m
θ
=
∑
m
=
−
∞
∞
f
−
m
(
r
)
¯
e
i
m
θ
,
∑
m
=
−
∞
∞
g
m
(
r
)
¯
e
−
i
m
θ
=
∑
m
=
−
∞
∞
g
−
m
(
r
)
¯
e
i
m
θ
{\displaystyle \displaystyle \sum _{m=-\infty }^{\infty }{\overline {f_{m}(r)}}e^{-im\theta }=\sum _{m=-\infty }^{\infty }{\overline {f_{-m}(r)}}e^{im\theta },\quad \sum _{m=-\infty }^{\infty }{\overline {g_{m}(r)}}e^{-im\theta }=\sum _{m=-\infty }^{\infty }{\overline {g_{-m}(r)}}e^{im\theta }}
(7)
Comparing equation ... and ... to get
f
m
(
r
)
=
f
−
m
(
r
)
¯
and
g
m
(
r
)
=
g
−
m
(
r
)
¯
{\displaystyle \displaystyle f_{m}(r)={\overline {f_{-m}(r)}}\quad {\text{and}}\quad g_{m}(r)={\overline {g_{-m}(r)}}}
(8)
However, we can go further to get simplier (in this context) representation of solutions by doing some operations. For example, from the above conditions, one can wrire:
u
r
=
∑
m
=
−
∞
∞
f
m
(
r
)
e
i
m
θ
=
f
0
(
r
)
+
∑
m
=
1
∞
f
m
(
r
)
e
i
m
θ
+
∑
m
=
−
∞
−
1
f
m
(
r
)
e
i
m
θ
=
f
0
(
r
)
+
∑
m
=
1
∞
f
m
(
r
)
e
i
m
θ
+
∑
m
=
1
∞
f
−
m
(
r
)
e
−
i
m
θ
=
f
0
(
r
)
+
∑
m
=
1
∞
f
m
(
r
)
e
i
m
θ
+
∑
m
=
1
∞
f
m
(
r
)
¯
e
−
i
m
θ
=
f
0
(
r
)
+
∑
m
=
1
∞
f
m
(
r
)
e
i
m
θ
+
∑
m
=
1
∞
f
m
(
r
)
e
i
m
θ
¯
=
f
0
(
r
)
+
∑
m
=
1
∞
(
f
m
(
r
)
e
i
m
θ
+
f
m
(
r
)
e
i
m
θ
¯
)
=
f
0
(
r
)
+
2
∑
m
=
1
∞
R
(
f
m
(
r
)
e
i
m
θ
)
≡
R
∑
m
=
0
∞
F
m
(
r
)
e
i
m
θ
{\displaystyle \displaystyle {\begin{aligned}u_{r}&=\sum _{m=-\infty }^{\infty }{f_{m}(r)}e^{im\theta }=f_{0}(r)+\sum _{m=1}^{\infty }f_{m}(r)e^{im\theta }+\sum _{m=-\infty }^{-1}f_{m}(r)e^{im\theta }=f_{0}(r)+\sum _{m=1}^{\infty }f_{m}(r)e^{im\theta }+\sum _{m=1}^{\infty }f_{-m}(r)e^{-im\theta }\\&=f_{0}(r)+\sum _{m=1}^{\infty }f_{m}(r)e^{im\theta }+\sum _{m=1}^{\infty }{\overline {f_{m}(r)}}e^{-im\theta }=f_{0}(r)+\sum _{m=1}^{\infty }f_{m}(r)e^{im\theta }+\sum _{m=1}^{\infty }{\overline {f_{m}(r)e^{im\theta }}}\\&=f_{0}(r)+\sum _{m=1}^{\infty }\left(f_{m}(r)e^{im\theta }+{\overline {f_{m}(r)e^{im\theta }}}\right)=f_{0}(r)+2\sum _{m=1}^{\infty }\mathbb {R} \left(f_{m}(r)e^{im\theta }\right)\equiv \mathbb {R} \sum _{m=0}^{\infty }F_{m}(r)e^{im\theta }\\\end{aligned}}}
(9)
We conclude by writing the general representation of solutions as follows:
u
r
=
R
∑
m
=
0
∞
f
m
(
r
)
e
i
m
θ
,
u
θ
=
R
∑
m
=
0
∞
g
m
(
r
)
e
i
m
θ
{\displaystyle \displaystyle u_{r}=\mathbb {R} \sum _{m=0}^{\infty }f_{m}(r)e^{im\theta },\qquad u_{\theta }=\mathbb {R} \sum _{m=0}^{\infty }g_{m}(r)e^{im\theta }}
(10)
it means that m is a nonnegative integer. Now let find the solution of the Navier's equation. Subtitute ... to ...
(
λ
+
2
μ
)
(
f
″
+
f
′
r
)
−
(
λ
+
2
μ
+
m
2
μ
r
2
)
f
=
i
m
[
(
λ
+
3
μ
)
g
r
2
−
(
λ
+
μ
)
g
′
r
]
{\displaystyle \displaystyle (\lambda +2\mu )\left(f''+{\frac {f'}{r}}\right)-\left({\frac {\lambda +2\mu +m^{2}\mu }{r^{2}}}\right)f=im\left[(\lambda +3\mu ){\frac {g}{r^{2}}}-(\lambda +\mu ){\frac {g'}{r}}\right]}
(11)
μ
(
g
″
+
g
′
r
)
−
(
(
λ
+
2
μ
)
m
2
+
μ
r
2
)
g
=
−
i
m
[
(
λ
+
3
μ
)
f
r
2
+
(
λ
+
μ
)
f
′
r
]
{\displaystyle \displaystyle \mu \left(g''+{\frac {g'}{r}}\right)-\left({\frac {(\lambda +2\mu )m^{2}+\mu }{r^{2}}}\right)g=-im\left[(\lambda +3\mu ){\frac {f}{r^{2}}}+(\lambda +\mu ){\frac {f'}{r}}\right]}
(12)
Let consider possible situations.
λ
+
2
μ
=
0
{\displaystyle \displaystyle \lambda +2\mu =0}
−
m
2
μ
r
2
f
=
i
m
μ
[
g
r
2
+
g
′
r
]
{\displaystyle \displaystyle -{\frac {m^{2}\mu }{r^{2}}}f=im\mu \left[{\frac {g}{r^{2}}}+{\frac {g'}{r}}\right]}
(13)
μ
(
g
″
+
g
′
r
)
−
μ
r
2
g
=
−
i
m
μ
[
f
r
2
−
f
′
r
]
{\displaystyle \displaystyle \mu \left(g''+{\frac {g'}{r}}\right)-{\frac {\mu }{r^{2}}}g=-im\mu \left[{\frac {f}{r^{2}}}-{\frac {f'}{r}}\right]}
(14)
A.
μ
=
0
{\displaystyle \displaystyle \mu =0\quad }
The Navier's equations auto-satisfied or any arbitratry functions
u
r
,
u
θ
{\displaystyle \displaystyle u_{r},u_{\theta }\quad }
can be solutions. In this case the trivial solutions
u
=
0
{\displaystyle \displaystyle \mathbf {u} =0\quad }
is unstable.
B.
μ
≠
0
{\displaystyle \displaystyle \mu \neq 0}
−
m
2
r
2
f
=
i
m
(
g
r
2
+
g
′
r
)
{\displaystyle \displaystyle -{\frac {m^{2}}{r^{2}}}f=im\left({\frac {g}{r^{2}}}+{\frac {g'}{r}}\right)}
(15)
(
g
″
+
g
′
r
)
−
g
r
2
=
−
i
m
(
f
r
2
−
f
′
r
)
{\displaystyle \displaystyle \left(g''+{\frac {g'}{r}}\right)-{\frac {g}{r^{2}}}=-im\left({\frac {f}{r^{2}}}-{\frac {f'}{r}}\right)}
(16)
It is obvious that the system, in this case, always admits nontrivial axisysmetric solutions (w.r.t
m
=
0
{\displaystyle \displaystyle m=0}
)
u
r
=
f
0
(
r
)
{\displaystyle \displaystyle \quad u_{r}=f_{0}(r)}
arbitrary and hence the instability of trivial solution
u
=
0
{\displaystyle \displaystyle \mathbf {u} =0\quad }
occurs.
μ
=
0
{\displaystyle \displaystyle \mu =0}
λ
(
f
″
+
f
′
r
)
−
λ
f
r
2
=
i
m
λ
[
g
r
2
−
g
′
r
]
{\displaystyle \displaystyle \lambda \left(f''+{\frac {f'}{r}}\right)-{\frac {\lambda f}{r^{2}}}=im\lambda \left[{\frac {g}{r^{2}}}-{\frac {g'}{r}}\right]}
(17)
−
λ
m
2
g
r
2
=
−
i
m
λ
[
f
r
2
+
f
′
r
]
{\displaystyle \displaystyle -\lambda {\frac {m^{2}g}{r^{2}}}=-im\lambda \left[{\frac {f}{r^{2}}}+{\frac {f'}{r}}\right]}
(18)
A.
λ
=
0
{\displaystyle \displaystyle \lambda =0}
The same conclusion as 1.a above.
B.
λ
≠
0
{\displaystyle \displaystyle \lambda \neq 0}
(
f
″
+
f
′
r
)
−
f
r
2
=
i
m
[
g
r
2
−
g
′
r
]
{\displaystyle \displaystyle \left(f''+{\frac {f'}{r}}\right)-{\frac {f}{r^{2}}}=im\left[{\frac {g}{r^{2}}}-{\frac {g'}{r}}\right]}
(19)
m
2
g
r
2
=
i
m
[
f
r
2
+
f
′
r
]
{\displaystyle \displaystyle {\frac {m^{2}g}{r^{2}}}=im\left[{\frac {f}{r^{2}}}+{\frac {f'}{r}}\right]}
(20)
Same conclusion as 1.b except that in this case nontrivial,arbitrary axisysmetric solutions (w.r.t
m
=
0
{\displaystyle \quad m=0}
) is
u
θ
=
g
0
(
r
)
{\displaystyle \quad u_{\theta }=g_{0}(r)}
arbitrary.
λ
+
2
μ
≠
0
,
μ
≠
0
{\displaystyle \displaystyle \lambda +2\mu \neq 0,\mu \neq 0}
f
″
+
f
′
r
−
(
1
+
m
2
μ
λ
+
2
μ
)
f
r
2
=
i
m
λ
+
2
μ
[
(
λ
+
3
μ
)
g
r
2
−
(
λ
+
μ
)
g
′
r
]
{\displaystyle \displaystyle f''+{\frac {f'}{r}}-\left(1+{\frac {m^{2}\mu }{\lambda +2\mu }}\right){\frac {f}{r^{2}}}={\frac {im}{\lambda +2\mu }}\left[(\lambda +3\mu ){\frac {g}{r^{2}}}-(\lambda +\mu ){\frac {g'}{r}}\right]}
(21)
g
″
+
g
′
r
−
(
1
+
(
λ
+
2
μ
)
m
2
μ
)
g
r
2
=
−
i
m
μ
[
(
λ
+
3
μ
)
f
r
2
+
(
λ
+
μ
)
f
′
r
]
{\displaystyle \displaystyle g''+{\frac {g'}{r}}-\left(1+{\frac {(\lambda +2\mu )m^{2}}{\mu }}\right){\frac {g}{r^{2}}}=-{\frac {im}{\mu }}\left[(\lambda +3\mu ){\frac {f}{r^{2}}}+(\lambda +\mu ){\frac {f'}{r}}\right]}
(22)
A.
m
=
0
{\displaystyle \displaystyle m=0}
f
0
(
r
)
=
A
0
r
+
A
1
r
,
g
0
(
r
)
=
B
0
r
+
B
1
r
{\displaystyle \displaystyle f_{0}(r)=A_{0}r+{\frac {A_{1}}{r}},\qquad g_{0}(r)=B_{0}r+{\frac {B_{1}}{r}}}
(23)
where
A
0
,
A
1
,
B
0
and
B
1
{\displaystyle \displaystyle \quad A_{0},A_{1},B_{0}{\text{and}}B_{1}\quad }
are arbitrary real constants.
B.
m
≥
0
{\displaystyle \displaystyle m\geq 0\quad }
Assume
f
(
r
)
=
A
r
k
,
g
(
r
)
=
B
r
k
{\displaystyle \displaystyle f(r)=Ar^{k},g(r)=Br^{k}}
are solutions of ... Plug them to
(
k
2
−
α
2
)
A
−
i
m
λ
+
2
μ
[
(
λ
+
3
μ
)
−
(
λ
+
μ
)
k
]
B
=
0
{\displaystyle \displaystyle (k^{2}-\alpha ^{2})A-{\frac {im}{\lambda +2\mu }}\left[(\lambda +3\mu )-(\lambda +\mu )k\right]B=0}
(24)
(
k
2
−
β
2
)
B
+
i
m
μ
[
(
λ
+
3
μ
)
+
(
λ
+
μ
)
k
]
A
=
0
{\displaystyle \displaystyle (k^{2}-\beta ^{2})B+{\frac {im}{\mu }}\left[(\lambda +3\mu )+(\lambda +\mu )k\right]A=0}
(25)
where
α
2
=
1
+
m
2
μ
λ
+
2
μ
,
β
2
=
1
+
m
2
(
λ
+
2
μ
)
μ
{\displaystyle \displaystyle \alpha ^{2}=1+{\frac {m^{2}\mu }{\lambda +2\mu }},\qquad \beta ^{2}=1+{\frac {m^{2}(\lambda +2\mu )}{\mu }}}
(26)
Rewrite the system of equation in the matrix form
[
(
k
2
−
α
2
)
−
i
m
λ
+
2
μ
[
(
λ
+
3
μ
)
−
(
λ
+
μ
)
k
]
i
m
μ
[
(
λ
+
3
μ
)
+
(
λ
+
μ
)
k
]
(
k
2
−
β
2
)
]
{
A
B
}
=
{
0
0
}
{\displaystyle \displaystyle {\begin{bmatrix}\displaystyle (k^{2}-\alpha ^{2})&\displaystyle -{\frac {im}{\lambda +2\mu }}\left[(\lambda +3\mu )-(\lambda +\mu )k\right]\\\displaystyle {\frac {im}{\mu }}\left[(\lambda +3\mu )+(\lambda +\mu )k\right]&(k^{2}-\beta ^{2})\end{bmatrix}}{\begin{Bmatrix}A\\B\end{Bmatrix}}={\begin{Bmatrix}0\\0\end{Bmatrix}}}
(27)
and realize that the system has non-trivial solutions if the determinant equal zero or
(
k
2
−
α
2
)
(
k
2
−
β
2
)
+
(
i
m
)
2
μ
(
λ
+
2
μ
)
[
(
λ
+
3
μ
)
−
(
λ
+
μ
)
k
]
[
(
λ
+
3
μ
)
+
(
λ
+
μ
)
k
]
=
0
{\displaystyle \displaystyle (k^{2}-\alpha ^{2})(k^{2}-\beta ^{2})+{\frac {(im)^{2}}{\mu (\lambda +2\mu )}}\left[(\lambda +3\mu )-(\lambda +\mu )k\right]\left[(\lambda +3\mu )+(\lambda +\mu )k\right]=0}
(28)
Solving the above equation to obtain
k
4
−
2
(
m
2
+
1
)
k
2
+
(
m
2
−
1
)
2
=
0
→
k
=
±
m
±
1
{\displaystyle \displaystyle k^{4}-2(m^{2}+1)k^{2}+(m^{2}-1)^{2}=0\to k=\pm m\pm 1}
(29)
Recognize that when
m
=
1
{\displaystyle \displaystyle m=1\quad }
then
k
1
=
2
,
k
2
=
k
3
=
0
,
k
4
=
−
2
{\displaystyle \displaystyle k_{1}=2,k_{2}=k_{3}=0,k_{4}=-2}
. We have three independent solutions in this case,
r
2
,
r
0
=
c
o
n
s
t
,
r
−
2
{\displaystyle \displaystyle r^{2},\quad r^{0}=const,\quad r^{-2}}
Since the solution
r
0
=
c
o
n
s
t
{\displaystyle \displaystyle r^{0}=const}
is the one with respect to the double root of the characteristic equation, we can find another independent solution, which is
l
n
(
r
)
{\displaystyle \displaystyle ln(r)}
. So for this case the general solution would be
f
1
(
r
)
=
A
1
1
r
2
+
A
1
2
+
A
1
3
l
n
r
+
A
1
4
r
−
2
,
g
1
(
r
)
=
B
1
1
r
2
+
B
1
2
+
B
1
3
l
n
r
+
B
1
4
r
−
2
{\displaystyle \displaystyle f_{1}(r)=A_{1}^{1}r^{2}+A_{1}^{2}+A_{1}^{3}lnr+A_{1}^{4}r^{-2},\qquad g_{1}(r)=B_{1}^{1}r^{2}+B_{1}^{2}+B_{1}^{3}lnr+B_{1}^{4}r^{-2}}
(30)
where
B
1
1
=
i
(
3
λ
+
5
μ
)
λ
−
μ
A
1
1
,
B
1
2
=
i
A
1
2
+
i
(
λ
+
μ
)
λ
+
3
μ
A
1
3
,
B
1
3
=
i
A
1
3
,
B
1
4
=
−
i
A
1
4
{\displaystyle \displaystyle B_{1}^{1}={\frac {i(3\lambda +5\mu )}{\lambda -\mu }}A_{1}^{1},\quad B_{1}^{2}=iA_{1}^{2}+i{\frac {(\lambda +\mu )}{\lambda +3\mu }}A_{1}^{3},\quad B_{1}^{3}=iA_{1}^{3},\quad B_{1}^{4}=-iA_{1}^{4}}
(31)
When
m
≥
2
{\displaystyle \displaystyle m\geq 2}
we have four different values of
k
,
k
1
=
m
+
1
,
k
2
=
m
−
1
,
k
3
=
−
m
+
1
,
k
4
=
−
m
−
1
{\displaystyle \displaystyle k,\quad k_{1}=m+1,\quad k_{2}=m-1,\quad k_{3}=-m+1,\quad k_{4}=-m-1}
, giving the solutions:
f
m
(
r
)
=
A
m
1
r
k
1
+
A
m
2
r
k
2
+
A
m
3
r
k
3
+
A
m
4
r
k
2
=
A
m
1
r
m
+
1
+
A
m
2
r
m
−
1
+
A
m
3
r
−
m
+
1
+
A
m
4
r
−
m
−
1
{\displaystyle \displaystyle f_{m}(r)=A_{m}^{1}r^{k_{1}}+A_{m}^{2}r^{k_{2}}+A_{m}^{3}r^{k_{3}}+A_{m}^{4}r^{k_{2}}=A_{m}^{1}r^{m+1}+A_{m}^{2}r^{m-1}+A_{m}^{3}r^{-m+1}+A_{m}^{4}r^{-m-1}}
(32)
g
m
(
r
)
=
B
m
1
r
k
1
+
B
m
2
r
k
2
+
B
m
3
r
k
3
+
B
m
4
r
k
2
=
B
m
1
r
m
+
1
+
B
m
2
r
m
−
1
+
B
m
3
r
−
m
+
1
+
B
m
4
r
−
m
−
1
{\displaystyle \displaystyle g_{m}(r)=B_{m}^{1}r^{k_{1}}+B_{m}^{2}r^{k_{2}}+B_{m}^{3}r^{k_{3}}+B_{m}^{4}r^{k_{2}}=B_{m}^{1}r^{m+1}+B_{m}^{2}r^{m-1}+B_{m}^{3}r^{-m+1}+B_{m}^{4}r^{-m-1}}
(33)
with relations
B
m
s
=
−
i
m
μ
(
(
k
s
)
2
−
β
2
)
[
(
λ
+
3
μ
)
+
(
λ
+
μ
)
k
]
,
s
=
1
,
4
¯
{\displaystyle \displaystyle B_{m}^{s}=-{\frac {im}{\mu ((k_{s})^{2}-\beta ^{2})}}\left[(\lambda +3\mu )+(\lambda +\mu )k\right],\qquad s={\overline {1,4}}}
(34)
Finally, the form of the general solutions after superimposing all modes are:
u
r
=
A
0
r
+
A
1
r
+
R
(
A
1
1
r
2
+
A
1
2
+
A
1
3
l
n
r
+
A
1
4
r
−
2
)
e
i
θ
+
R
∑
m
=
2
∞
(
A
m
1
r
m
+
1
+
A
m
2
r
m
−
1
+
A
m
3
r
−
m
+
1
+
A
m
4
r
−
m
−
1
)
e
i
m
θ
{\displaystyle \displaystyle u_{r}=A_{0}r+{\frac {A_{1}}{r}}+\mathbb {R} \left(A_{1}^{1}r^{2}+A_{1}^{2}+A_{1}^{3}lnr+A_{1}^{4}r^{-2}\right)e^{i\theta }+\mathbb {R} \sum _{m=2}^{\infty }\left(A_{m}^{1}r^{m+1}+A_{m}^{2}r^{m-1}+A_{m}^{3}r^{-m+1}+A_{m}^{4}r^{-m-1}\right)e^{im\theta }}
(35)
u
θ
=
B
0
r
+
B
1
r
+
R
(
B
1
1
r
2
+
B
1
2
+
B
1
3
l
n
r
+
B
1
4
r
−
2
)
e
i
θ
+
R
∑
m
=
2
∞
(
B
m
1
r
m
+
1
+
B
m
2
r
m
−
1
+
B
m
3
r
−
m
+
1
+
B
m
4
r
−
m
−
1
)
e
i
m
θ
{\displaystyle \displaystyle u_{\theta }=B_{0}r+{\frac {B_{1}}{r}}+\mathbb {R} \left(B_{1}^{1}r^{2}+B_{1}^{2}+B_{1}^{3}lnr+B_{1}^{4}r^{-2}\right)e^{i\theta }+\mathbb {R} \sum _{m=2}^{\infty }\left(B_{m}^{1}r^{m+1}+B_{m}^{2}r^{m-1}+B_{m}^{3}r^{-m+1}+B_{m}^{4}r^{-m-1}\right)e^{im\theta }}
(36)
When no tractions at the outer boundary
edit
When no displacements at the outer boundary
edit