f ′ ( c ) = f ( b ) − f ( a ) b − a {\displaystyle f'(c)={\frac {f(b)-f(a)}{b-a}}}
∫ f ′ ( c ) d x = ∫ f ( b ) − f ( a ) b − a d x {\displaystyle \int f'(c)dx=\int {\frac {f(b)-f(a)}{b-a}}dx}
f ( c ) = F ( b ) − F ( a ) b − a {\displaystyle f(c)={\frac {F(b)-F(a)}{b-a}}} where F is an antiderivative of f
f ( c ) = ∫ a b f ( x ) d x b − a {\displaystyle f(c)={\frac {\int _{a}^{b}f(x)dx}{b-a}}} by the FTC