Mucoromycota

edit

Informally known as zygomycetes I, Mucoromycota includes Mucoromycotina, Mortierellomycotina, and Glomeromycotina[1]. Mucoromycotina and Glomeromycotina can form mycorrhiza-like relationships with nonvascular plants[2]. Mucoromycota contain multiple mycorrhizal lineages[3], root endophytes[4], and decomposers of plant-based carbon sources[5]. Mucoromycotina species known as mycoparasites, or putative parasites of arthropods are like saprobes[6]. When Mucoromycota infect animals, they are seen as opportunistic pathogens[1]. Mucoromycotina are fast growing fungi and early colonizers of carbon rich substrates[7]. Mortierellomycotina are common soil fungi that occur as root endophytes of woody plants and are isolated as saprobes[8]. Glomeromycotina live in soil, forming a network of hyphae but depend on organic carbon from host plants. In exchange the arbuscular mycorrhizal fungi provide nutrients to the plant[9].

Reproduction

edit

Known reproduction states of Mucoromycota are zygospore production and asexual reproduction. Zygospores can have decorations on their surface and range up to several millimeters in diameter[10]. Asexual reproduction typically involves the production of sporangiospores or chlamydospores[1]. Multicellular sporcaps are present within Mucoromycotina[11], Mortierellomycotina[12] and as aggregations of spore-producing in species of Glomeromycotina[3]. Shown in Mucorales, sexual reproduction is under the control of mating type genes, sexP and sexM, which regulate the production of pheromones required for the maturation of hyphae into gametangia[13][10]. The sexP gene is expressed during vegetative growth and matting while the sexM gene is expressed during mating[14]. Glomeromycotina sexual reproduction is unknown. However asexual chlamydospore spores can be created terminally, laterally, or intercalary on specialized hyphae[5]. Species of Glomeromycotina produce coenocytic hyphae that can have bacterial endosymbionts[15]. Mortierellomycotina reproduce asexually by sporangia that either lack or have a reduced columella, which support the sporangium[1]. Species of Mortierellomycotina only form microscopic colonies, but some make multicellular sporocarps[12]. Mucoromycotina sexual reproduction is by prototypical zygospore formation and asexual reproduction and involves the large production of sporangia[1].

Morphology

edit

Mucoromycotina contain discoidal hemispherical spindle pole bodies. Although spindle pole bodies function as microtubule organizing centers, they lack remnants of the centrioles’ characteristic 9+2 microtubule arrangement. Species of Mucoromycotina and Mortierellomycotina produce large diameter, coenocytic hyphae. Glomeromycotina also form coenocytic hyphae with highly branched, narrow hyphal arbuscules in host cells. When septations occur in Mucoromycota they are formed at the base of reproductive structures[1].

Production of Lipids, Polyphosphates, and Carotenoids

edit

Mucoromycota’s metabolism can utilize many substrates that are from various nitrogen and phosphorus resources to produce lipids, chitin, polyphosphates, and carotenoids. They have been found to co-produce metabolites in a single fermentation process like polyphosphates and lipids[16]. The overproduction of chitin from Mucoromycota fungi can be accomplished by limiting inorganic phosphorus [17]. Mucoromycota are capable of accumulating high amounts of lipids in their cell biomass which allows the fungi to produce polyunsaturated fatty acids and carotenoids. They have been found to induce antimicrobial activity from fungal crude total lipids [18][19]. The high production of lipids from Mucoromycota have the potential for use in biodiesel production [20][21].

References

edit
  1. ^ a b c d e f Spatafora, Joseph W.; Chang, Ying; Benny, Gerald L.; Lazarus, Katy; Smith, Matthew E.; Berbee, Mary L.; Bonito, Gregory; Corradi, Nicolas; Grigoriev, Igor; Gryganskyi, Andrii; James, Timothy Y. (2016-09). "A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data". Mycologia. 108 (5): 1028–1046. doi:10.3852/16-042. ISSN 0027-5514. PMC 6078412. PMID 27738200. {{cite journal}}: Check date values in: |date= (help)CS1 maint: PMC format (link)
  2. ^ Field, Katie J.; Rimington, William R.; Bidartondo, Martin I.; Allinson, Kate E.; Beerling, David J.; Cameron, Duncan D.; Duckett, Jeffrey G.; Leake, Jonathan R.; Pressel, Silvia (2014-09-17). "First evidence of mutualism between ancient plant lineages ( <scp>H</scp> aplomitriopsida liverworts) and <scp>M</scp> ucoromycotina fungi and its response to simulated <scp>P</scp> alaeozoic changes in atmospheric <scp>CO</scp> 2". New Phytologist. 205 (2): 743–756. doi:10.1111/nph.13024. ISSN 0028-646X. {{cite journal}}: line feed character in |title= at position 61 (help)
  3. ^ a b Redecker, Dirk; Schüßler, Arthur. Glomeromycota. A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research VII- Systematics and Evolution, 7A (2ème ed.). doi:[https://doi.org/10.1007%2F978-3-642-55318-9%EF%BF%BD 10.1007/978-3-642-55318-9�]. {{cite book}}: replacement character in |doi= at position 26 (help)
  4. ^ Terhonen, Eeva; Keriö, Susanna; Sun, Hui; Asiegbu, Fred O. (2014-06). "Endophytic fungi of Norway spruce roots in boreal pristine mire, drained peatland and mineral soil and their inhibitory effect on Heterobasidion parviporum in vitro". Fungal Ecology. 9: 17–26. doi:10.1016/j.funeco.2014.01.003. {{cite journal}}: Check date values in: |date= (help)
  5. ^ a b Benny, Gerald L.; Humber, Richard A.; Voigt, Kerstin (2014), "8 Zygomycetous Fungi: Phylum Entomophthoromycota and Subphyla Kickxellomycotina, Mortierellomycotina, Mucoromycotina, and Zoopagomycotina", Systematics and Evolution, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 209–250, ISBN 978-3-642-55317-2, retrieved 2022-04-01
  6. ^ Hoffmann, K.; Pawłowska, J.; Walther, G.; Wrzosek, M.; de Hoog, G.S.; Benny, G.L.; Kirk, P.M.; Voigt, K. (2013-06-30). "The family structure of the Mucorales: a synoptic revision based on comprehensive multigene-genealogies". Persoonia - Molecular Phylogeny and Evolution of Fungi. 30 (1): 57–76. doi:10.3767/003158513X666259. PMC 3734967. PMID 24027347.{{cite journal}}: CS1 maint: PMC format (link)
  7. ^ Jennessen, Jennifer; Schnürer, Johan; Olsson, Johan; Samson, Robert A.; Dijksterhuis, Jan (2008-05). "Morphological characteristics of sporangiospores of the tempe fungus Rhizopus oligosporus differentiate it from other taxa of the R. microsporus group". Mycological Research. 112 (5): 547–563. doi:10.1016/j.mycres.2007.11.006. {{cite journal}}: Check date values in: |date= (help)
  8. ^ Summerbell, Richard C. (2005). "Root endophyte and mycorrhizosphere fungi of black spruce, Picea mariana, in a boreal forest habitat: influence of site factors on fungal distributions". Studies in Mycology. 53: 121–145. doi:10.3114/sim.53.1.121.
  9. ^ Lanfranco, Luisa; Fiorilli, Valentina; Gutjahr, Caroline (2018-12). "Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis". New Phytologist. 220 (4): 1031–1046. doi:10.1111/nph.15230. {{cite journal}}: Check date values in: |date= (help)
  10. ^ a b Lee, Soo Chan; Idnurm, Alexander (2017-03-10). Heitman, Joseph; Gow, Neil A. R. (eds.). "Fungal Sex: The Mucoromycota". Microbiology Spectrum. 5 (2): 5.2.14. doi:10.1128/microbiolspec.FUNK-0041-2017. ISSN 2165-0497.
  11. ^ Bidartondo, Martin I.; Read, David J.; Trappe, James M.; Merckx, Vincent; Ligrone, Roberto; Duckett, Jeffrey G. (2011-03-09). "The dawn of symbiosis between plants and fungi". Biology Letters. 7 (4): 574–577. doi:10.1098/rsbl.2010.1203. ISSN 1744-9561.
  12. ^ a b Smith, Matthew E.; Gryganskyi, Andrii; Bonito, Gregory; Nouhra, Eduardo; Moreno-Arroyo, Baldomero; Benny, Gerald (2013-12). "Phylogenetic analysis of the genus Modicella reveals an independent evolutionary origin of sporocarp-forming fungi in the Mortierellales". Fungal Genetics and Biology. 61: 61–68. doi:10.1016/j.fgb.2013.10.001. {{cite journal}}: Check date values in: |date= (help)
  13. ^ Idnurm, Alexander; Walton, Felicia J.; Floyd, Anna; Heitman, Joseph (2008-01). "Identification of the sex genes in an early diverged fungus". Nature. 451 (7175): 193–196. doi:10.1038/nature06453. ISSN 0028-0836. {{cite journal}}: Check date values in: |date= (help)
  14. ^ Wetzel, Jana; Burmester, Anke; Kolbe, Melanie; Wöstemeyer, Johannes (2012-04-01). "The mating-related loci sexM and sexP of the zygomycetous fungus Mucor mucedo and their transcriptional regulation by trisporoid pheromones". Microbiology. 158 (4): 1016–1023. doi:10.1099/mic.0.054106-0. ISSN 1350-0872.
  15. ^ Torres-Cortés, Gloria; Ghignone, Stefano; Bonfante, Paola; Schüßler, Arthur (2015-05-11). "Mosaic genome of endobacteria in arbuscular mycorrhizal fungi: Transkingdom gene transfer in an ancient mycoplasma-fungus association". Proceedings of the National Academy of Sciences. 112 (25): 7785–7790. doi:10.1073/pnas.1501540112. ISSN 0027-8424.
  16. ^ Dzurendova, Simona; Losada, Cristian Bolano; Dupuy-Galet, Benjamin Xavier; Fjær, Kai; Shapaval, Volha (2022-01). "Mucoromycota fungi as powerful cell factories for modern biorefinery". Applied Microbiology and Biotechnology. 106 (1): 101–115. doi:10.1007/s00253-021-11720-1. ISSN 0175-7598. {{cite journal}}: Check date values in: |date= (help)
  17. ^ Dzurendova, Simona; Zimmermann, Boris; Kohler, Achim; Tafintseva, Valeria; Slany, Ondrej; Certik, Milan; Shapaval, Volha (2020-06-22). Virolle, Marie-Joelle (ed.). "Microcultivation and FTIR spectroscopy-based screening revealed a nutrient-induced co-production of high-value metabolites in oleaginous Mucoromycota fungi". PLOS ONE. 15 (6): e0234870. doi:10.1371/journal.pone.0234870. ISSN 1932-6203. PMC 7307774. PMID 32569317.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  18. ^ Mohamed, Hassan; El-Shanawany, Abdel-Rahim; Shah, Aabid Manzoor; Nazir, Yusuf; Naz, Tahira; Ullah, Samee; Mustafa, Kiren; Song, Yuanda (2020-11-05). Domingues, Luc lia (ed.). "Comparative Analysis of Different Isolated Oleaginous Mucoromycota Fungi for Their γ-Linolenic Acid and Carotenoid Production". BioMed Research International. 2020: 1–13. doi:10.1155/2020/3621543. ISSN 2314-6141. PMC 7665918. PMID 33204691.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  19. ^ Volford, Bettina; Varga, Mónika; Szekeres, András; Kotogán, Alexandra; Nagy, Gábor; Vágvölgyi, Csaba; Papp, Tamás; Takó, Miklós (2021-03-19). "β-Galactosidase-Producing Isolates in Mucoromycota: Screening, Enzyme Production, and Applications for Functional Oligosaccharide Synthesis". Journal of Fungi. 7 (3): 229. doi:10.3390/jof7030229. ISSN 2309-608X. PMC 8003776. PMID 33808917.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  20. ^ Kosa, Gergely; Zimmermann, Boris; Kohler, Achim; Ekeberg, Dag; Afseth, Nils Kristian; Mounier, Jerome; Shapaval, Volha (2018-12). "High-throughput screening of Mucoromycota fungi for production of low- and high-value lipids". Biotechnology for Biofuels. 11 (1): 66. doi:10.1186/s13068-018-1070-7. ISSN 1754-6834. PMC 5851148. PMID 29563969. {{cite journal}}: Check date values in: |date= (help)CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  21. ^ Zhao, Heng; Lv, Meilin; Liu, Ze; Zhang, Mingzhe; Wang, Yaning; Ju, Xiao; Song, Zhen; Ren, Liying; Jia, Bisi; Qiao, Min; Liu, Xiaoyong (2021-12). "High-yield oleaginous fungi and high-value microbial lipid resources from Mucoromycota". BioEnergy Research. 14 (4): 1196–1206. doi:10.1007/s12155-020-10219-3. ISSN 1939-1234. {{cite journal}}: Check date values in: |date= (help)