Last 10 Year Average Earnings per Share = ( ∑ k = 0 39 Quarterly EPS t − k ) 40 {\displaystyle {\text{Last 10 Year Average Earnings per Share}}={\frac {\displaystyle \left(\sum _{k=0}^{39}{\text{Quarterly EPS}}_{t-k}\right)}{40}}}
a = { a ∈ R | 0 < a < 1 } {\displaystyle a=\left\{a\in \mathbb {R} |0<a<1\right\}}
∫ − ∞ x 1 σ 2 π e − ( x − μ ) 2 2 σ 2 d x = 1 2 [ 1 + erf ( x − μ σ 2 ) ] {\displaystyle \int _{-\infty }^{x}{\frac {1}{\sigma {\sqrt {2\pi }}}}e^{-{\frac {(x-\mu )^{2}}{2\sigma ^{2}}}}\,dx={\frac {1}{2}}{\Big [}1+\operatorname {erf} {\Big (}{\frac {x-\mu }{\sigma {\sqrt {2}}}}{\Big )}{\Big ]}}
( ∑ i = 0 n 10 i ) 2 = ∑ i = 1 n i ⋅ 10 ( i − 1 ) + ∑ i = 1 n − 1 i ⋅ 10 ( 2 n − i ) {\displaystyle \left(\sum _{i=0}^{n}10^{i}\right)^{2}=\sum _{i=1}^{n}i\cdot 10^{\left(i-1\right)}+\sum _{i=1}^{n-1}i\cdot 10^{\left(2n-i\right)}}