<math>
H(1) = \begin{bmatrix}
1 &  1 \\
1 & -1 \end{bmatrix}
</math>
 
<math>
H(k) = \begin{bmatrix}
H(k-1) &  H(k-1)\\
H(k-1)  & -H(k-1)\end{bmatrix}
</math>
 
<math>\frac{1}{2}Q\left[f(a) + 2f(a+Q) + 2f(a+2Q) + 2f(a+3Q)+\dots+f(b)\right]</math>
 
<math>\left \vert \int_{a}^{b} f(x) - A_{trap} \right \vert \le \frac{M_2(b-a)^3}{(12n^2)}</math>
 
<math>\sum_{x_i\in P} f(c_i)(g(x_{i+1})-g(x_i))</math>
 
<math>\int_a^b f(x) \, dg(x)=f(b)g(b)-f(a)g(a)-\int_a^b g(x) \, df(x)</math>
 
 <math>
  \begin{bmatrix}
    1 & 0 & 2 \\
    -1 & 3 & 1 \\
  \end{bmatrix}
\times
  \begin{bmatrix}
    3 & 1 \\
    2 & 1 \\
    1 & 0
  \end{bmatrix}
=
  \begin{bmatrix}
     (1 \times 3  +  0 \times 2  +  2 \times 1) & (1 \times 1   +   0 \times 1   +   2 \times 0) \\
    (-1 \times 3  +  3 \times 2  +  1 \times 1) & (-1 \times 1   +   3 \times 1   +   1 \times 0) \\
  \end{bmatrix}
=
  \begin{bmatrix}
    5 & 1 \\
    4 & 2 \\
  \end{bmatrix}
</math>


 
<math> (AB)[i,j] = A[i,1]  B[1,j] + A[i,2]  B[2,j] + ... + A[i,n]  B[n,j] \!\ </math>