41 42 0 + 41 42 1 + 41 42 2 + 41 42 3 + 41 42 4 + ⋯ = 42 {\displaystyle {\frac {41}{42^{0}}}+{\frac {41}{42^{1}}}+{\frac {41}{42^{2}}}+{\frac {41}{42^{3}}}+{\frac {41}{42^{4}}}+\cdots =42}
∑ n = 0 ∞ x − 1 x n = x {\displaystyle \sum _{n=0}^{\infty }{\frac {x-1}{x^{n}}}=x}
21 2 1 + 2 ( 21 ) 2 2 + 3 ( 21 ) 2 3 + 4 ( 21 ) 2 4 + 5 ( 21 ) 2 5 + ⋯ = 42 {\displaystyle {\frac {21}{2^{1}}}+{\frac {2(21)}{2^{2}}}+{\frac {3(21)}{2^{3}}}+{\frac {4(21)}{2^{4}}}+{\frac {5(21)}{2^{5}}}+\cdots =42}
∑ n = 1 ∞ n ( x 2 ) 2 n = x {\displaystyle \sum _{n=1}^{\infty }{\frac {n({\frac {x}{2}})}{2^{n}}}=x}
41 2 + 21 ( 41 ) + 41 21 1 2 2 + 21 2 41 + 21 ( 41 ) + 41 21 2 2 3 + 21 3 41 + 21 2 41 + 21 ( 41 ) + 41 21 3 2 4 + ⋯ = 42 {\displaystyle {\frac {41}{2}}+{\frac {21(41)+41}{21^{1}2^{2}}}+{\frac {21^{2}41+21(41)+41}{21^{2}2^{3}}}+{\frac {21^{3}41+21^{2}41+21(41)+41}{21^{3}2^{4}}}+\cdots =42}
∑ n = 0 ∞ f n ( x 2 ) ( x 2 ) n 2 n + 1 = x {\displaystyle \sum _{n=0}^{\infty }{\frac {f_{n}({\frac {x}{2}})}{({\frac {x}{2}})^{n}2^{n+1}}}=x}
1 = det ( I n ) {\displaystyle 1=\det(I_{n})\,}
2 = 2 2 2 ⋅ ⋅ ⋅ = ∞ ( 2 ) {\displaystyle 2={\sqrt {2}}^{{\sqrt {2}}^{{\sqrt {2}}^{\ \cdot ^{\cdot ^{\cdot }}}}}=\ ^{\infty }({\sqrt {2}})}
3 = 2 ∑ n = 0 ∞ ( 4 n ) ! ( 1103 + 26390 n ) ( n ! ) 4 396 4 n 19602 ∑ k = 0 ∞ ( − 1 ) k ( 6 k ) ! ( 13591409 + 545140134 k ) ( 3 k ) ! ( k ! ) 3 640320 3 k + 3 / 2 {\displaystyle 3={\frac {{\sqrt {2}}\sum _{n=0}^{\infty }{\frac {(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}}\!}{19602\sum _{k=0}^{\infty }{\frac {(-1)^{k}(6k)!(13591409+545140134k)}{(3k)!(k!)^{3}640320^{3k+3/2}}}}}}
4 = ( i + i i ) 4 {\displaystyle 4=({\sqrt {i}}+i{\sqrt {i}})^{4}}
5 = ( 1 + 5 2 ) 5 − ( 1 − 5 2 ) 5 5 {\displaystyle 5={\frac {({\frac {1+{\sqrt {5}}}{2}})^{5}-({\frac {1-{\sqrt {5}}}{2}})^{5}}{\sqrt {5}}}}
6 = 3 ( 3 + 4 + 5 ) ( 3 − 4 + 5 ) ( 3 + 4 − 5 ) ( − 3 + 4 + 5 ) 4 ( 3 ) {\displaystyle 6={\frac {3{\sqrt {(3+4+5)(3-4+5)(3+4-5)(-3+4+5)}}}{4(3)}}}
7 = ln lim n → ∞ ( 1 + 7 n ) n {\displaystyle 7=\ln \lim _{n\to \infty }\left(1+{\frac {7}{n}}\right)^{n}}
8 = 16 π ∏ n = 1 ∞ ( 4 ⋅ n 2 4 ⋅ n 2 − 1 ) {\displaystyle 8={\frac {16}{\pi }}\prod _{n=1}^{\infty }\left({\frac {4\cdot n^{2}}{4\cdot n^{2}-1}}\right)}
9 = ( 9 ∑ n = 1 ∞ 1 n 3 4 ∑ k = 0 ∞ ( − 1 ) k ( k + 1 ) 3 ) ( i i − i ) ( 2 ∏ k = 0 ∞ ( 1 − 1 ( 4 k + 2 ) 2 ) ) {\displaystyle 9=\left({\frac {9\sum _{n=1}^{\infty }{\frac {1}{n^{3}}}}{4\sum _{k=0}^{\infty }{\frac {(-1)^{k}}{(k+1)^{3}}}}}\right)^{\left(i{\sqrt {i}}-{\sqrt {i}}\right)\left(2\prod _{k=0}^{\infty }\left(1-{\frac {1}{(4k+2)^{2}}}\right)\right)}}
10 = ∏ n = 1 ∞ e ( 9 10 ) n n {\displaystyle 10=\prod _{n=1}^{\infty }e^{\frac {({\frac {9}{10}})^{n}}{n}}}
0 = π ln − 1 + i {\displaystyle 0={\frac {\pi }{\ln -1}}+i}
x = ∏ n = 1 ∞ e ( x − 1 x ) n n {\displaystyle x=\prod _{n=1}^{\infty }e^{\frac {({\frac {x-1}{x}})^{n}}{n}}}
x 2 = − 1 {\displaystyle x^{2}=-1\,}
x 2 − 1 = − 2 {\displaystyle x^{2}-1=-2\,}
( x − 1 ) ( x + 1 ) = − 2 {\displaystyle (x-1)(x+1)=-2\,}
x − 1 = − 2 1 + x {\displaystyle x-1={\frac {-2}{1+x}}}
x = 1 − 2 1 + x {\displaystyle x=1-{\frac {2}{1+x}}}
x = 1 − 2 1 + ( 1 − 2 1 + x ) {\displaystyle x=1-{\frac {2}{1+{\Big (}1-{\cfrac {2}{1+x}}{\Big )}}}}
x = 1 − 2 2 − 2 1 + x {\displaystyle x=1-{\frac {2}{2-{\cfrac {2}{1+x}}}}}
x = 1 − 2 2 − 2 2 − 2 2 − 2 2 − 2 ⋱ {\displaystyle x=1-{\frac {2}{2-{\cfrac {2}{2-{\cfrac {2}{2-{\cfrac {2}{2-{\cfrac {2}{\ddots }}}}}}}}}}}
e i π = − 1 {\displaystyle e^{i\pi }=-1\,}
n = ∞ ( n n − 1 ) {\displaystyle n=\ ^{\infty }{\Big (}n^{n^{-1}}{\Big )}}
sin x = o p p o s i t e h y p o t e n u s e {\displaystyle \sin x={\frac {opposite}{hypotenuse}}}
cos x = h y p o t e n u s e o p p o s i t e {\displaystyle \cos x={\frac {hypotenuse}{opposite}}}
sec x = a d j a c e n t h y p o t e n u s e {\displaystyle \sec x={\frac {adjacent}{hypotenuse}}}
csc x = h y p o t e n u s e a d j a c e n t {\displaystyle \csc x={\frac {hypotenuse}{adjacent}}}
tan x = sin x sec x = csc x cos x {\displaystyle \tan x={\frac {\sin x}{\sec x}}={\frac {\csc x}{\cos x}}}
cot x = sec x sin x = cos x csc x {\displaystyle \cot x={\frac {\sec x}{\sin x}}={\frac {\cos x}{\csc x}}}
4 = ∞ ( i + i i ) {\displaystyle 4=\ ^{\infty }\left({\sqrt {i}}+i{\sqrt {i}}\right)}
lim n → ∞ n ( x 1 n − 1 ) {\displaystyle \lim _{n\to \infty }n\left(x^{\frac {1}{n}}-1\right)}
lim n → ∞ ( 1 + x n ) n = e x {\displaystyle \lim _{n\to \infty }\left(1+{\frac {x}{n}}\right)^{n}=e^{x}}
( 1 − 1 2 s − 1 ) ζ ( s ) = η ( s ) {\displaystyle \left(1-{\frac {1}{2^{s-1}}}\right)\zeta (s)=\eta (s)}
lim n → ∞ ζ ( 1 + 1 n ) = n {\displaystyle \lim _{n\to \infty }\zeta \left(1+{\frac {1}{n}}\right)=n}
lim n → ∞ ( 1 − 1 2 1 / n ) n = ln 2 {\displaystyle \lim _{n\to \infty }\left(1-{\frac {1}{2^{1/n}}}\right)n=\ln 2}
lim n → ∞ n ( 1 − 1 x 1 / n ) {\displaystyle \lim _{n\to \infty }n\left(1-{\frac {1}{x^{1/n}}}\right)}
∑ n = 1 ∞ ( ∑ m = 1 x − 1 1 x n − m − x − 1 x n ) = ln x {\displaystyle \sum _{n=1}^{\infty }\left(\sum _{m=1}^{x-1}{\frac {1}{xn-m}}-{\frac {x-1}{xn}}\right)=\ln x}
lim x → ∞ ∑ n = 2 ∞ ( ∑ m = 1 x − 1 1 x n − m − x − 1 x n ) = 1 − γ {\displaystyle \lim _{x\to \infty }\sum _{n=2}^{\infty }\left(\sum _{m=1}^{x-1}{\frac {1}{xn-m}}-{\frac {x-1}{xn}}\right)=1-\gamma }
∑ n = 1 ∞ ( 1 x n ∑ m = 1 x − 1 m x n − m ) = ln x {\displaystyle \sum _{n=1}^{\infty }\left({\frac {1}{xn}}\sum _{m=1}^{x-1}{\frac {m}{xn-m}}\right)=\ln x}
1 − 1 3 n + 1 5 n − 1 7 n + 1 9 n − 1 11 n ± ⋯ {\displaystyle 1-{\frac {1}{3^{n}}}+{\frac {1}{5^{n}}}-{\frac {1}{7^{n}}}+{\frac {1}{9^{n}}}-{\frac {1}{11^{n}}}\pm \cdots }
1 3 − 1 − 1 3 5 + 1 − 1 3 + 1 5 7 − 1 − 1 3 + 1 5 − 1 7 9 ± ⋯ = π 2 32 {\displaystyle {\frac {1}{3}}-{\frac {1-{\tfrac {1}{3}}}{5}}+{\frac {1-{\tfrac {1}{3}}+{\tfrac {1}{5}}}{7}}-{\frac {1-{\tfrac {1}{3}}+{\tfrac {1}{5}}-{\tfrac {1}{7}}}{9}}\pm \cdots ={\frac {\pi ^{2}}{32}}}
∏ p ∞ ( 1 − 1 p n ) − 1 = ζ ( n ) {\displaystyle \prod _{p}^{\infty }\left(1-{\frac {1}{{p}^{n}}}\right)^{-1}=\zeta (n)}
∏ p ≠ 2 ∞ ( 1 − i ( p − 1 ) p n ) − 1 {\displaystyle \prod _{p\neq 2}^{\infty }\left(1-{\frac {i^{(p-1)}}{{p}^{n}}}\right)^{-1}}
∏ p ∞ ( 1 + 1 p n ) − 1 ∏ q ∞ ( 1 − 1 q n ) − 1 {\displaystyle \prod _{p}^{\infty }\left(1+{\frac {1}{{p}^{n}}}\right)^{-1}\prod _{q}^{\infty }\left(1-{\frac {1}{q^{n}}}\right)^{-1}}
∑ k = 0 ∞ 1 ( 2 k + 1 ) n = ( 1 − 1 2 n ) ζ ( n ) {\displaystyle \sum _{k=0}^{\infty }{\frac {1}{(2k+1)^{n}}}=\left(1-{\frac {1}{2^{n}}}\right)\zeta (n)}
∑ k = 0 ∞ ( − 1 ) k ( 2 k + 1 ) n = ( 1 − 1 2 n ) ζ ( n ) ∏ p ∞ ( p n − 1 p n + 1 ) {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}}{(2k+1)^{n}}}=\left(1-{\frac {1}{2^{n}}}\right)\zeta (n)\prod _{p}^{\infty }\left({\frac {p^{n}-1}{p^{n}+1}}\right)}
π 2 = ∑ n = 1 ∞ ( − 1 | n ) n {\displaystyle {\frac {\pi }{2}}=\sum _{n=1}^{\infty }{\frac {(-1|n)}{n}}}
∏ p ∞ ( p n − 1 p n + 1 ) ζ ( n ) = ∑ k = 1 ∞ ( − 1 | k ) k n {\displaystyle \prod _{p}^{\infty }\left({\frac {p^{n}-1}{p^{n}+1}}\right)\zeta (n)=\sum _{k=1}^{\infty }{\frac {(-1|k)}{k^{n}}}}
π 2 = 1 + 1 2 − 1 3 + 1 4 + 1 5 − 1 6 − 1 7 + 1 8 + 1 9 + 1 10 − 1 11 − 1 12 + 1 13 − 1 14 − 1 15 + 1 16 + ⋯ {\displaystyle {\frac {\pi }{2}}=1+{\frac {1}{2}}-{\frac {1}{3}}+{\frac {1}{4}}+{\frac {1}{5}}-{\frac {1}{6}}-{\frac {1}{7}}+{\frac {1}{8}}+{\frac {1}{9}}+{\frac {1}{10}}-{\frac {1}{11}}-{\frac {1}{12}}+{\frac {1}{13}}-{\frac {1}{14}}-{\frac {1}{15}}+{\frac {1}{16}}+\cdots }
1 4 = ∑ n = 0 ∞ ( 1 − β ( 2 n + 1 ) ) {\displaystyle {\frac {1}{4}}=\sum _{n=0}^{\infty }\left(1-\beta (2n+1)\right)}
ln 2 = ∑ n = 1 ∞ ( 1 − β ( n ) ) {\displaystyle \ln {\sqrt {2}}=\sum _{n=1}^{\infty }\left(1-\beta (n)\right)}
β ( 2 n + 1 ) = E k π 2 n + 1 4 ( 4 n ) ! ! {\displaystyle \beta (2n+1)={\frac {E_{k}\pi ^{2n+1}}{4(4n)!!}}}
π 4 = ∑ n = 1 ∞ η ( n ) 2 n {\displaystyle {\frac {\pi }{4}}=\sum _{n=1}^{\infty }{\frac {\eta (n)}{2^{n}}}}
1 2 = ∑ n = 0 ∞ η ( 2 n + 1 ) 2 2 n + 1 {\displaystyle {\frac {1}{2}}=\sum _{n=0}^{\infty }{\frac {\eta (2n+1)}{2^{2n+1}}}}
1 + 1 + 1 + 1 + 1 + ⋯ = − 1 2 {\displaystyle 1+1+1+1+1+\cdots =-{\frac {1}{2}}}
1 + 2 + 3 + 4 + 5 + ⋯ = − 1 12 {\displaystyle 1+2+3+4+5+\cdots =-{\frac {1}{12}}}
1 + 4 + 9 + 16 + 25 + ⋯ = 0 {\displaystyle 1+4+9+16+25+\cdots =0}
1 + 8 + 27 + 64 + 125 + ⋯ = 1 120 {\displaystyle 1+8+27+64+125+\cdots ={\frac {1}{120}}}
1 + 16 + 81 + 256 + 625 + ⋯ = 0 {\displaystyle 1+16+81+256+625+\cdots =0}
1 + 32 + 243 + 1024 + 3125 + ⋯ = − 1 252 {\displaystyle 1+32+243+1024+3125+\cdots =-{\frac {1}{252}}}
1 × 2 × 3 × 4 × 5 × ⋯ = 2 π {\displaystyle 1\times 2\times 3\times 4\times 5\times \cdots ={\sqrt {2\pi }}}
n ( r ) = 1 3 ( r 2 ( r 6 + 54 a 2 r 2 + 6 3 27 a 4 r 8 + a 2 r 10 ) 1 3 + ( r 6 + 54 a 2 r 2 + 6 3 27 a 4 r 8 + a 2 r 10 ) 1 3 r 2 − 2 ) {\displaystyle n(r)={\frac {1}{3}}\left({\frac {r^{2}}{(r^{6}+54a^{2}r^{2}+6{\sqrt {3}}{\sqrt {27a^{4}r^{8}+a^{2}r^{10}}})^{\frac {1}{3}}}}+{\frac {(r^{6}+54a^{2}r^{2}+6{\sqrt {3}}{\sqrt {27a^{4}r^{8}+a^{2}r^{10}}})^{\frac {1}{3}}}{r^{2}}}-2\right)}