——————————————————————————————————————————————————
X
∗
=
X
∗
=
X
∖
{
0
}
;
X
+
=
X
+
=
{
x
∈
X
|
x
⩾
0
}
{\displaystyle \mathbb {X} ^{*}\ =\mathbb {X} _{*}\ =\mathbb {X} \smallsetminus {\Big \{}0{\Big \}}\qquad \qquad \quad ;\quad \mathbb {X} ^{^{+}}=\mathbb {X} _{_{+}}={\Big \{}\ x\in \mathbb {X} \ {\Big |}\ x\geqslant 0\ {\Big \}}}
X
∗
∗
=
X
∗
∗
=
X
∖
{
0
,
1
}
;
X
−
=
X
−
=
{
x
∈
X
|
x
⩽
0
}
{\displaystyle \mathbb {X} ^{**}=\mathbb {X} _{**}=\mathbb {X} \smallsetminus {\Big \{}0,1{\Big \}}\qquad \qquad ;\quad \mathbb {X} ^{^{-}}=\mathbb {X} _{_{-}}={\Big \{}\ x\in \mathbb {X} \ {\Big |}\ x\leqslant 0\ {\Big \}}}
X
Y
=
Y
X
=
X
∩
Y
=
Y
∩
X
;
X
¯
=
X
∪
{
±
∞
}
{\displaystyle \mathbb {X} _{\mathbb {Y} }=\mathbb {Y} _{\mathbb {X} }=\mathbb {X} \ \cap \ \mathbb {Y} =\mathbb {Y} \ \cap \ \mathbb {X} \ \quad ;\quad {\overline {\mathbb {X} }}\ \ =\mathbb {X} \ \cup \ {\Big \{}\pm \infty {\Big \}}}
X
n
=
.
X
×
X
×
.
.
.
×
X
.
⏟
n times
=
{
(
x
1
,
x
2
,
.
.
.
,
x
n
)
|
x
k
∈
X
;
k
∈
1...
n
¯
}
{\displaystyle \mathbb {X} ^{\text{n}}=\underbrace {{\color {white}.}\mathbb {X} \times \mathbb {X} \times ...\times \mathbb {X} {\color {white}.}} _{\text{n times}}\ =\ {\Big \{}\ (x_{_{1}},x_{_{2}},...,x_{n})\ {\Big |}\ x_{_{\text{k}}}\in \mathbb {X} \ ;\ k\ \in \ {\overline {1...n}}\ {\Big \}}}
——————————————————————————————————————————————————
Integers. Rationals. Radicals
edit
——————————————————————————————————————————————————
N
+
N
=
N
⋅
N
=
N
;
N
−
N
=
Z
;
Z
Z
=
Q
¯
{\displaystyle \mathbb {N} +\mathbb {N} \ =\ \mathbb {N} \cdot \mathbb {N} \ =\ \mathbb {N} \quad ;\qquad \mathbb {N} -\mathbb {N} \ =\ \mathbb {Z} \qquad \quad ;\quad \qquad {\frac {\mathbb {Z} }{\mathbb {Z} }}\ =\ {\overline {\mathbb {Q} }}}
N
=
(
N
,
+
,
×
)
;
Q
¯
=
(
N
,
±
,
×
,
÷
)
{\displaystyle \mathbb {N} \ =\ {\Big (}\ \mathbb {N} ,\ +,\ \times \ {\Big )}\qquad ;\qquad {\overline {\mathbb {Q} }}\ =\ {\Big (}\ \mathbb {N} ,\ \pm ,\ \times ,\ \div \ {\Big )}}
Z
=
(
N
,
±
,
×
)
;
V
¯
^
=
(
N
,
±
,
×
,
÷
,
n
|
n
∈
N
∗
)
{\displaystyle \mathbb {Z} \ =\ {\Big (}\ \mathbb {N} ,\ \pm ,\ \times \ {\Big )}\qquad ;\qquad {\widehat {\overline {\mathbb {V} }}}\ =\ {\Big (}\ \mathbb {N} ,\ \pm ,\ \times ,\ \div ,\ {\sqrt[{^{n}}]{\ }}\ {\Big |}\ n\in \mathbb {N} ^{*}\ {\Big )}}
——————————————————————————————————————————————————
Algebraics & Transcendentals
edit
——————————————————————————————————————————————————
A
^
n
=
{
z
|
∃
P
n
(
z
)
=
∑
k
=
0
n
a
k
z
k
=
0
;
a
n
≠
0
a
k
∈
Z
,
k
∈
0...
n
¯
}
{\displaystyle {\widehat {\mathbb {A} }}_{n}=\ \left\{\ z\ \left|\ \exists \ P_{n}(z)=\sum _{k\ =\ 0}^{n}{a_{_{\text{k}}}z^{k}}=0\ ;\quad \ {\begin{aligned}&a_{n}\neq \ 0\\&a_{_{\text{k}}}\in \ \mathbb {Z} \end{aligned}}\quad ,\ k\ \in \ {\overline {0...n}}\ \right.\right\}}
A
^
1
=
Q
;
A
^
∞
=
C
;
A
^
n
⊂
A
^
n
+
1
,
n
∈
N
∗
A
n
=
A
^
n
∖
A
^
n
−
1
,
n
∈
N
∗
∗
{\displaystyle {\widehat {\mathbb {A} }}_{1}=\ \mathbb {Q} \quad ;\qquad \ {\widehat {\mathbb {A} }}_{\infty }=\ \mathbb {C} \quad ;\qquad \ {\begin{aligned}&{\widehat {\mathbb {A} }}_{n}\subset \ {\widehat {\mathbb {A} }}_{n+1}\qquad \qquad ,\quad n\in \mathbb {N} ^{*}\\&\mathbb {A} _{n}=\ {\widehat {\mathbb {A} }}_{n}\ \smallsetminus \ {\widehat {\mathbb {A} }}_{n-1}\quad ,\quad n\in \mathbb {N} ^{**}\end{aligned}}}
A
1
=
Q
;
A
∞
=
T
;
A
=
⋃
n
∈
N
∗
A
n
|
V
=
V
^
∖
Q
B
=
A
∖
V
^
{\displaystyle \mathbb {A} _{1}=\ \mathbb {Q} \quad ;\qquad \ \mathbb {A} _{\infty }=\ \mathbb {T} \quad ;\qquad \ \mathbb {A} \ \ =\bigcup _{{\text{n}}\ \in \ \mathbb {N} ^{*}}\mathbb {A} _{n}\quad {\Bigg |}\ {\begin{aligned}\mathbb {V} \ =\ {\widehat {\mathbb {V} }}\smallsetminus \mathbb {Q} \\\mathbb {B} \ =\ \mathbb {A} \smallsetminus {\widehat {\mathbb {V} }}\end{aligned}}}
V
n
=
V
∩
A
n
V
=
⋃
n
∈
N
∗
V
n
{\displaystyle \mathbb {V} _{n}=\ \mathbb {V} \ \ \cap \ \mathbb {A} _{n}\qquad \qquad \qquad \qquad \mathbb {V} \ \ =\bigcup _{{\text{n}}\ \in \ \mathbb {N} ^{*}}\mathbb {V} _{n}}
B
n
=
B
∩
A
n
.
B
=
⋃
n
∈
N
∗
B
n
{\displaystyle \mathbb {B} _{n}=\ \mathbb {B} \ \ \cap \ \mathbb {A} _{n}\qquad \qquad \qquad \qquad {\color {white}.}\mathbb {B} \ \ =\bigcup _{{\text{n}}\ \in \ \mathbb {N} ^{*}}\mathbb {B} _{n}}
A
n
=
V
n
∪
B
n
,
n
∈
N
∗
∗
;
.
V
1
=
B
1
=
B
2
=
B
3
=
B
4
=
∅
{\displaystyle \mathbb {A} _{n}=\ \mathbb {V} _{n}\cup \ \mathbb {B} _{n}\quad ,\quad n\in \mathbb {N} ^{**}\quad ;\quad {\color {white}.}\mathbb {V} _{1}=\ \mathbb {B} _{1}=\ \mathbb {B} _{2}=\ \mathbb {B} _{3}=\ \mathbb {B} _{4}=\varnothing }
——————————————————————————————————————————————————
——————————————————————————————————————————————————
R
→
{
A
1
=
Q
→
{
Z
→
{
Z
+
=
N
→
P
Z
−
F
I
→
{
I
T
=
R
T
=
T
R
I
A
→
{
I
V
=
R
V
=
V
R
I
B
=
R
B
=
B
R
{\displaystyle \mathbb {R} \rightarrow {\begin{cases}\mathbb {A} _{1}=\mathbb {Q} \rightarrow {\begin{cases}\mathbb {Z} \rightarrow {\begin{cases}\mathbb {Z} _{_{+}}=\mathbb {N} \rightarrow \mathbb {P} \\\mathbb {Z} _{_{-}}\end{cases}}\\\mathbb {F} \end{cases}}\\\\\ \qquad \ \mathbb {I} \rightarrow {\begin{cases}\mathbb {I} _{\mathbb {T} }\ =\ \mathbb {R} _{\mathbb {T} }\ =\ \mathbb {T} _{\mathbb {R} }\\\\\mathbb {I} _{\mathbb {A} }\rightarrow {\begin{cases}\mathbb {I} _{\mathbb {V} }\ =\ \mathbb {R} _{\mathbb {V} }\ =\ \mathbb {V} _{\mathbb {R} }\\\mathbb {I} _{\mathbb {B} }\ =\ \mathbb {R} _{\mathbb {B} }\ =\ \mathbb {B} _{\mathbb {R} }\end{cases}}\end{cases}}\end{cases}}}
——————————————————————————————————————————————————
C
=
R
2
=
R
×
R
=
R
+
i
⋅
R
=
A
∪
T
=
Q
∪
V
∪
B
∪
T
{\displaystyle \mathbb {C} \ =\ \mathbb {R} ^{2}\ =\ \mathbb {R} \times \mathbb {R} \ =\ \mathbb {R} +i\cdot \mathbb {R} \ =\ \mathbb {A} \ \cup \ \mathbb {T} \ =\ \mathbb {Q} \ \cup \ \mathbb {V} \ \cup \ \mathbb {B} \ \cup \ \mathbb {T} }
——————————————————————————————————————————————————
C
→
{
A
→
{
Q
A
1
V
.
radicals
B
Bring radicals
A
∞
=
T
{\displaystyle \mathbb {C} \rightarrow {\begin{cases}\mathbb {A} \rightarrow {\begin{cases}\mathbb {Q} \qquad \mathbb {A} _{1}\\\mathbb {V} \qquad {\sqrt {\ }}\quad \ {\color {white}.}{\text{radicals}}\\\mathbb {B} \qquad {\text{Bring radicals}}\end{cases}}\\\\\mathbb {A} _{\infty }=\ \mathbb {T} \end{cases}}}
——————————————————————————————————————————————————
The Basic Circle Constant
edit
——————————————————————————————————————————————————
e
=
2.
72
−
{\displaystyle e\ =\ 2.\ 72^{^{-}}}
Describes a circle or a spiral, by transforming a translation alongside a vertical or inclined straight line from the complex plane into a rotation around the point of origin :
e
Z
=
e
x
+
i
y
=
e
x
⋅
e
i
y
=
e
x
⋅
(
cos
y
+
i
⋅
sin
y
)
{\displaystyle e^{\mathcal {Z}}\ =\ e^{x\ +\ iy}\ =\ e^{x}\cdot e^{iy}\ =\ e^{x}\cdot (\cos {y}\ +\ i\cdot \sin {y})}
Transcendental, and therefore irrational, since the exponential function generates a transcendental polynomial :
e
x
=
∑
n
=
0
∞
x
n
n
!
,
1
n
!
∈
Q
,
deg
(
e
x
)
=
∞
{\displaystyle e^{x}\ =\sum _{n=0}^{\infty }\ {\frac {x^{n}}{n!}}\qquad ,\qquad {\frac {1}{n!}}\in \mathbb {Q} \qquad ,\qquad \deg(e^{x})=\infty }
whereas algebraics are characterized by polynomial equations of finite degree over the rationals.
——————————————————————————————————————————————————
The Basic Factorial Constant
edit
——————————————————————————————————————————————————
π
=
Γ
2
(
1
2
)
=
4
⋅
(
1
2
!
)
2
{\displaystyle \pi \ =\ \Gamma ^{2}\left({\tfrac {1}{2}}\right)\ =\ 4\cdot {\Big (}{\tfrac {1}{2}}!{\Big )}^{2}}
Transcendental, and therefore irrational, since each n-sided polygon is described by a polynomial of the n-th degree, generated by the product of all first degree polynomials corresponding to the linear equation of each one of the polygon's n sides. But the circle, on the other hand, has an infinite number of such sides, each the size of a point, characterized by the linear equation of the tangent in that point.
——————————————————————————————————————————————————
Rational Approximations
edit
——————————————————————————————————————————————————
I
˙
≃
Q
1
10
≃
Q
1
7
≃
Q
{\displaystyle {\dot {\mathbf {I} }}\quad \ \simeq \quad \mathbf {Q} _{_{\tfrac {1}{10}}}\qquad \qquad \qquad \qquad \quad \ \simeq \qquad \quad \mathbf {Q} _{_{\tfrac {1}{7}}}\ \qquad \quad \simeq \quad \ \mathbf {Q} }
——————————————————————————————————————————————————
e
π
=
23.
14
+
≃
23
1
7
=
162
7
T
{\displaystyle e^{\pi }\ \ =23.\ 14^{^{+}}\qquad \qquad \qquad \qquad \quad \simeq \quad 23{\tfrac {1}{7}}\ =\ {\tfrac {162}{7}}\qquad \qquad \qquad \qquad \mathbb {T} }
——————————————————————————————————————————————————
π
2
=
9.
87
−
≃
9
6
7
=
69
7
T
{\displaystyle \pi ^{2}\ \ =\ 9.\ 87^{^{-}}\ \qquad \qquad \qquad \qquad \quad \simeq \quad \ 9{\tfrac {6}{7}}\ =\ \ {\tfrac {69}{7}}\qquad \qquad \qquad \qquad \quad \mathbb {T} }
——————————————————————————————————————————————————
π
=
3.
14
16
−
≃
3
1
7
=
22
7
≃
3
.
55
11
.
3
T
{\displaystyle \pi \quad =\ 3.\ 14\ 16^{^{-}}\qquad \qquad \qquad \qquad \simeq \quad \ 3{\tfrac {1}{7}}\ =\ \ {\tfrac {22}{7}}\qquad \simeq \quad {\tfrac {3{\color {white}.}55}{11{\color {white}.}3}}\qquad \quad \ \mathbb {T} }
——————————————————————————————————————————————————
e
=
2.
7
1828
1828
45
90
45
+
≃
2
5
7
=
19
7
T
{\displaystyle e\quad =\ 2.\ 7\ 1828\ 1828\ 45\ 90\ 45^{^{+}}\ \quad \simeq \quad \ 2{\tfrac {5}{7}}\ =\ \ {\tfrac {19}{7}}\qquad \qquad \qquad \qquad \quad \ \mathbb {T} }
——————————————————————————————————————————————————
3
=
1.
73
20
50
80
+
.
≃
1
5
7
=
12
7
≃
97
8
×
7
A
2
{\displaystyle {\sqrt {3}}\ =1.\ 73\ 20\ 50\ 80^{^{+}}\ {\color {white}.}\qquad \qquad \quad \simeq \quad \ 1{\tfrac {5}{7}}\ =\ \ {\tfrac {12}{7}}\qquad \simeq \quad {\tfrac {97}{8\times 7}}\qquad \quad \mathbb {A} _{2}}
——————————————————————————————————————————————————
2
=
1.
41
42
135
+
≃
1
3
7
=
10
7
≃
99
70
A
2
{\displaystyle {\sqrt {2}}\ =1.\ 41\ 42\ 135^{^{+}}\ \qquad \qquad \qquad \simeq \quad \ 1{\tfrac {3}{7}}\ =\ \ {\tfrac {10}{7}}\qquad \simeq \quad \ {\tfrac {99}{70}}\qquad \quad \ \mathbb {A} _{2}}
——————————————————————————————————————————————————
e
π
=
0.
865
+
≃
6
7
T
{\displaystyle {\frac {e}{\pi }}\ \ =\ 0.\ 865^{^{+}}\qquad \qquad \qquad \qquad \quad \simeq \qquad \qquad \quad {\tfrac {6}{7}}\qquad \qquad \qquad \qquad \quad \ \mathbb {T} }
——————————————————————————————————————————————————
γ
=
0.
577
+
≃
.
4
7
≃
8
×
7
97
T
{\displaystyle \gamma \ \ =\ 0.\ 577^{^{+}}\qquad \qquad \qquad \qquad \quad \simeq \qquad \qquad \quad {\color {white}.}{\tfrac {4}{7}}\qquad \simeq \quad {\tfrac {8\times 7}{97}}\qquad \quad \ \mathbb {T} }
——————————————————————————————————————————————————
Ω
1
=
0.
567
+
≃
.
4
7
T
{\displaystyle \Omega _{1}=\ 0.\ 567^{^{+}}\qquad \qquad \qquad \qquad \quad \simeq \qquad \qquad \quad {\color {white}.}{\tfrac {4}{7}}\qquad \qquad \qquad \qquad \quad \ \mathbb {T} }
——————————————————————————————————————————————————
As Multiples of 1 / 7
edit
——————————————————————————————————————————————————
e
π
=
23
1
7
−
=
162
7
−
π
2
=
9
6
7
+
=
69
7
+
{\displaystyle e^{\pi }\ \ =\ 23{\frac {1}{7}}^{^{-}}=\ {\frac {162}{7}}^{^{-}}\qquad \qquad \qquad \qquad \qquad \qquad \ \pi ^{2}\ =\ 9{\frac {6}{7}}^{^{+}}=\ {\frac {69}{7}}^{^{+}}}
——————————————————————————————————————————————————
π
=
3
1
7
−
=
22
7
−
e
=
2
5
7
+
=
19
7
+
{\displaystyle \pi \quad =\ \ 3{\frac {1}{7}}^{^{-}}\ =\ \ {\frac {22}{7}}^{^{-}}\qquad \qquad \qquad \qquad \qquad \qquad \quad e\ =\ 2{\frac {5}{7}}^{^{+}}=\ {\frac {19}{7}}^{^{+}}}
——————————————————————————————————————————————————
3
=
1
5
7
+
=
12
7
+
2
=
1
3
7
−
=
10
7
−
{\displaystyle {\sqrt {3}}\ =\ \ 1{\frac {5}{7}}^{^{+}}\ =\ \ {\frac {12}{7}}^{^{+}}\qquad \qquad \qquad \qquad \qquad \qquad {\sqrt {2}}\ =\ 1{\frac {3}{7}}^{^{-}}=\ {\frac {10}{7}}^{^{-}}}
——————————————————————————————————————————————————
e
π
=
6
7
+
γ
=
4
7
+
Ω
1
=
4
7
−
{\displaystyle {\frac {e}{\pi }}\quad =\quad {\frac {6}{7}}^{^{+}}\qquad \qquad \qquad \ \gamma \ =\ {\frac {4}{7}}^{^{+}}\qquad \qquad \qquad \ \Omega _{1}\ =\ \ {\frac {4}{7}}^{^{-}}}
——————————————————————————————————————————————————
——————————————————————————————————————————————————
2
=
2
⋅
49
49
=
98
49
=
100
−
49
=
10
7
−
A
2
{\displaystyle {\sqrt {2}}\ =\ {\sqrt {2\cdot {\frac {49}{49}}}}\ =\ \ {\sqrt {\frac {98}{49}}}\ \ =\ {\sqrt {\frac {100^{^{-}}}{49\ }}}\ =\ {\frac {10}{7}}^{^{-}}\ \qquad \qquad \qquad \qquad \qquad \ \mathbb {A} _{2}}
——————————————————————————————————————————————————
3
=
3
⋅
49
49
=
147
49
=
144
+
49
=
12
7
+
A
2
{\displaystyle {\sqrt {3}}\ =\ {\sqrt {3\cdot {\frac {49}{49}}}}\ =\ {\sqrt {\frac {147}{49}}}\ =\ {\sqrt {\frac {144^{^{+}}}{49\ }}}\ =\ {\frac {12}{7}}^{^{+}}\ \qquad \qquad \qquad \qquad \qquad \ \mathbb {A} _{2}}
——————————————————————————————————————————————————
2
=
2
⋅
25
25
=
50
25
=
49
+
25
=
7
5
+
A
2
{\displaystyle {\sqrt {2}}\ =\ {\sqrt {2\cdot {\frac {25}{25}}}}\ =\ \ {\sqrt {\frac {50}{25}}}\ \ =\ {\sqrt {\frac {49^{^{+}}}{25\ \ }}}\ \ =\ {\frac {7}{5}}^{^{+}}\ \qquad \qquad \qquad \qquad \qquad \quad \mathbb {A} _{2}}
——————————————————————————————————————————————————
3
=
3
⋅
16
16
=
48
16
=
49
−
16
=
7
4
−
A
2
{\displaystyle {\sqrt {3}}\ =\ {\sqrt {3\cdot {\frac {16}{16}}}}\ =\ {\sqrt {\frac {48}{16}}}\ \ =\ \ {\sqrt {\frac {49^{^{-}}}{16\ \ }}}\ \ =\ {\frac {7}{4}}^{^{-}}\ \qquad \qquad \qquad \qquad \qquad \quad \mathbb {A} _{2}}
——————————————————————————————————————————————————
2
∈
(
7
5
,
10
7
)
=>
2
≃
7
5
+
10
7
2
=
99
70
A
2
{\displaystyle {\sqrt {2}}\ \in \ \left({\frac {7}{5}}\ ,\ {\frac {10}{7}}\right)\qquad =>\qquad {\sqrt {2}}\ \simeq \ {\frac {{\tfrac {7}{5}}+{\tfrac {10}{7}}}{2}}\ =\ \ {\frac {99}{70}}\qquad \qquad \qquad \quad \mathbb {A} _{2}}
——————————————————————————————————————————————————
3
∈
(
12
7
,
7
4
)
=>
3
≃
7
4
+
12
7
2
=
97
8
⋅
7
A
2
{\displaystyle {\sqrt {3}}\ \in \ \left({\frac {12}{7}}\ ,\ {\frac {7}{4}}\right)\qquad =>\qquad {\sqrt {3}}\ \simeq \ {\frac {{\tfrac {7}{4}}+{\tfrac {12}{7}}}{2}}\ =\ {\frac {97}{8\cdot 7}}\ \qquad \qquad \qquad \ \mathbb {A} _{2}}
——————————————————————————————————————————————————
2
=
1.41
+
=
1.40
+
1.42
+
2
=
1
2
5
+
1
3
7
−
2
=
99
70
−
A
2
{\displaystyle {\sqrt {2}}\ =\ 1.41^{^{+}}\ =\ {\frac {1.40+1.42^{^{+}}}{2}}\ =\ {\frac {1{\tfrac {2}{5}}\ +\ 1{\tfrac {3}{7}}^{^{-}}}{2}}\ =\ \ {\frac {99}{70}}^{^{-}}\ \qquad \qquad \qquad \ \mathbb {A} _{2}}
——————————————————————————————————————————————————
3
=
1.73
+
=
1.71
+
+
1.75
2
=
1
5
7
−
+
1
3
4
2
=
97
−
8
⋅
7
A
2
{\displaystyle {\sqrt {3}}\ =\ 1.73^{^{+}}\ =\ {\frac {1.71^{^{+}}+1.75}{2}}\ =\ {\frac {1{\tfrac {5}{7}}^{^{-}}+\ 1{\tfrac {3}{4}}}{2}}\ \ =\ {\frac {\ 97^{^{-}}}{8\cdot 7}}\ \qquad \qquad \qquad \ \mathbb {A} _{2}}
——————————————————————————————————————————————————
1
2
=
0.
707
+
=
0.
(
70
)
+
=
70
99
+
=>
2
=
99
70
−
A
2
{\displaystyle {\frac {1}{\sqrt {2}}}\ =\ 0.\ 707^{^{+}}\ =\ 0.\ (70)^{^{+}}\ =\ {\frac {70}{99}}^{^{+}}\ =>\ {\sqrt {2}}\ =\ \ {\frac {99}{70}}^{^{-}}\ \qquad \qquad \qquad \ \mathbb {A} _{2}}
——————————————————————————————————————————————————
.
γ
=
1
−
3
=
8
⋅
7
97
−
T
=
A
∞
{\displaystyle {\color {white}.}\ \gamma \ =\ {\frac {\ \ 1^{^{-}}}{\sqrt {3}}}\ =\ {\frac {8\cdot 7}{97}}^{^{-}}\qquad \qquad \qquad \mathbb {T} =\mathbb {A} _{\infty }}
——————————————————————————————————————————————————
π
2
≃
(
3
1
7
)
2
=
3
2
+
2
⋅
3
⋅
1
7
+
(
1
7
)
2
=
9
6
7
+
=
69
7
+
T
=
A
∞
{\displaystyle \pi ^{2}\ \simeq \ {\Bigg (}3{\frac {1}{7}}{\Bigg )}^{2}=\ 3^{2}+2\cdot 3\cdot {\tfrac {1}{7}}+{\Big (}{\tfrac {1}{7}}{\Big )}^{2}=\ 9{\frac {6}{7}}^{^{+}}\ =\ \ {\frac {69}{7}}^{^{+}}\ \qquad \qquad \quad \mathbb {T} =\mathbb {A} _{\infty }}
——————————————————————————————————————————————————
e
π
≃
19
7
/
22
7
=
19
22
≃
19
−
1
22
−
1
=
18
21
=
6
⋅
3
7
⋅
3
=
6
7
T
=
A
∞
{\displaystyle {\frac {e}{\pi }}\ \simeq \ {\frac {19}{7}}{\Bigg /}{\frac {22}{7}}\ =\ {\frac {19}{22}}\ \simeq \ {\frac {19-1}{22-1}}\ =\ {\frac {18}{21}}\ =\ {\frac {6\cdot 3}{7\cdot 3}}\ =\ {\frac {6}{7}}\qquad \qquad \quad \mathbb {T} =\mathbb {A} _{\infty }}
——————————————————————————————————————————————————
Algebraic Approximations
edit
π
≃
10
≃
31
3
≃
2
+
3
≃
3
+
2
10
+
3
10
4
{\displaystyle \pi \quad \simeq \quad {\sqrt {10}}\ \quad \simeq \quad \ {\sqrt[{3}]{31}}\ \quad \simeq \quad \ {\sqrt {2}}\ +\ {\sqrt {3}}\ \quad \simeq \quad \ 3\ +\ {\frac {\sqrt {2}}{10}}\ +\ {\frac {\sqrt {3}}{10^{^{4}}}}}
——————————————————————————————————————————————————
e
=
φ
+
1.1
+
≃
(
1
2
+
1
3
)
4
≃
1
+
3
;
γ
≃
1
3
{\displaystyle e\ =\ \varphi \ +\ 1.1^{^{+}}\ \simeq \ \left({\frac {1}{\sqrt {2}}}\ +\ {\frac {1}{\sqrt {3}}}\right)^{4}\ \simeq \ 1+{\sqrt {3}}\ \qquad \quad ;\quad \qquad \ \gamma \ \simeq \ {\frac {1}{\sqrt {3}}}}
——————————————————————————————————————————————————
Transcendental Approximations
edit
e
π
≃
20
+
π
−
1
1111
{\displaystyle e^{\pi }\ \simeq \ 20\ +\ \pi \ -\ {\tfrac {1}{1111}}}
——————————————————————————————————————————————————
π
≃
10
⋅
e
8
9
≃
e
3
2
3
≃
5
+
e
4
2
≃
2
e
γ
+
9
4
≃
2
e
3
≃
2
e
γ
{\displaystyle \pi \ \simeq \ {\sqrt[{9}]{10\cdot e^{8}}}\ \simeq \ e^{^{^{\displaystyle }{\sqrt[{3}]{\tfrac {3}{2}}}}}\ \simeq \ {\frac {5\ +\ {\sqrt[{4}]{e}}}{2\quad }}\ \simeq \ {\frac {2\,e^{^{\gamma }}\ +\ 9}{\quad 4}}\ \simeq \ {\frac {2\,e}{\sqrt {3}}}\ \simeq \ 2\,e\,\gamma }
——————————————————————————————————————————————————
Other Identities & Approximations
edit
φ
=
1
+
5
2
=>
φ
2
=
φ
+
1
=>
.
1
φ
+
1
φ
+
1
=
1
1
φ
+
1
φ
.
2
1
=
1
{\displaystyle \varphi \ ={\frac {1+{\sqrt {5}}}{2}}\qquad =>\qquad \varphi ^{2}=\varphi \ +1\ \qquad \ =>\ \quad \ {\color {white}.}{\begin{aligned}{\tfrac {1}{\varphi }}\,\ +\,\ {\tfrac {1}{\varphi \ +\ 1}}\ =\ 1\\\\{\tfrac {1}{\varphi }}\,\ +\,\ {\tfrac {1}{\ \varphi ^{{\color {white}.}2^{\color {white}1}}}}\ \ =\ 1\end{aligned}}}
——————————————————————————————————————————————————
e
=
2.
718
+
φ
=
1.
618
+
=>
e
≃
φ
+
1.1
e
≃
φ
2
+
1
10
=>
1
e
+
1
φ
+
1
71
≃
1
1
e
+
1
e
+
1
39
≃
1
1
e
+
1
φ
.
2
1
+
1
87
≃
1
{\displaystyle {\begin{aligned}e=2.\ 718^{^{+}}\\\varphi =1.\ 618^{^{+}}\end{aligned}}\qquad =>\qquad {\begin{aligned}&e\ \simeq \ \varphi \ +1.1\\\\&e^{\ }\simeq \ \varphi ^{2}+{\tfrac {1}{10}}\end{aligned}}\qquad =>\qquad {\begin{aligned}&{\tfrac {1}{\mathbf {e} }}\,\ +\,\ {\tfrac {1}{\varphi }}\,\ +{\tfrac {1}{71}}\ \simeq \ 1\\\\&{\tfrac {1}{\mathbf {e} }}\,\ +\,\ {\tfrac {1}{\sqrt {\mathbf {e} }}}+{\tfrac {1}{39}}\ \simeq \ 1\\\\&{\tfrac {1}{\sqrt {\mathbf {e} }}}+{\tfrac {1}{\varphi ^{{\color {white}.}2^{\color {white}1}}}}+{\tfrac {1}{87}}\ \simeq \ 1\end{aligned}}}
——————————————————————————————————————————————————
1
2
=
0.
707
+
=
700
+
7
+
10
3
ln
2
=
0.
693
+
=
700
−
7
−
10
3
=>
ln
2
+
1
2
=
7
5
+
{\displaystyle {\begin{aligned}{\frac {1}{\sqrt {2}}}\ =\ 0.\ 707^{^{+}}\ =\ {\frac {700\ +\ 7^{^{+}}}{10^{3}}}\\\\\ln 2\ =\ 0.\ 693^{^{+}}\ =\ {\frac {700\ -\ 7^{^{-}}}{10^{3}}}\end{aligned}}\qquad \qquad \qquad =>\qquad \ \ln 2\ +\ {\frac {1}{\sqrt {2}}}\ =\ {\frac {7}{5}}^{^{+}}}
——————————————————————————————————————————————————