Iterated filtering algorithms are a tool for Maximum Likelihood inference on partially observed dynamic systems. Stochastic perturbations to the unknown parameters are used to explore the parameter space. Applying sequential Monte Carlo (the Particle Filter) to this extended model results in the selection of the parameter values that are more consistent with the data. Appropriately constructed procedures, iterating with successively diminished perturbations, converge to the maximum likelihood estimate.[1][2] Iterated filtering methods have so far been used most extensively to study the infectious disease transmission dynamics. Case studies include cholera,[3][4] influenza,[5][6] malaria[7] and measles.[8][4] Other areas which have been proposed to be suitable for these methods include ecological dynamics[9] and finance.[10]

Overview

edit

The data are a time series   collected at times  . The dynamic system is modeled by a Markov process   which is generated by a function   in the sense that

       

where   is a vector of unknown parameters and   is some random quantity that is drawn independently each time   is evaluated. An initial condition   at some time  , together with a measurement density   completes the specification of a partially observed Markov process. A basic iterated filtering algorithm is as follows:

Input

A partially observed Markov model specified as above
Algorithmic parameters: Monte Carlo sample size  ; number of iterations  ; cooling parameters   and  ; covariance matrix  ; initial parameter vector  

Procedure: Iterated filtering

for   to  
set   for  
draw  
set  
for   to  
set  
set  
draw   such that  
set  
draw  
set   to the sample mean of  , where   has components  
set   to the sample variance of  
set  

Output

maximum likelihood estimate  

References

edit
  1. ^ Ionides, E. L.; Bretó, C.; King, A. A. (2006). "Inference for nonlinear dynamical systems". Proceedings of the National Academy of Sciences of the USA. 103 (49): 18438–18443. doi:10.1073/pnas.0603181103. PMC 3020138. PMID 17121996.{{cite journal}}: CS1 maint: date and year (link)
  2. ^ Ionides, E. L. (2011). "Iterated filtering". Annals of Statistics (Prepublished Online). 39 (3). doi:10.1214/11-AOS886. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  3. ^ King, Aaron A.; Ionides, Edward L.; Pascual, Mercedes; Bouma, Menno J. (2008). "Inapparent infections and cholera dynamics". Nature. 454 (7206): 877–880. doi:10.1038/nature07084. PMID 18704085.{{cite journal}}: CS1 maint: date and year (link)
  4. ^ a b Bretó, Carles; He, Daihai; Ionides, Edward L.; King, Aaron A. (2009). "Time series analysis via mechanistic models". Annals of Applied Statistics. 3: 319–348. doi:10.1214/08-AOAS201.{{cite journal}}: CS1 maint: date and year (link)
  5. ^ He, D. (2011). "Mechanistic modelling of the three waves of the 1918 influenza pandemic". Theoretical Ecology. 4 (2): 1–6. doi:10.1007/s12080-011-0123-3.
  6. ^ Camacho, Anton; Ballesteros, Sébastien; Graham, Andrea L.; Carrat, Fabrice; Ratmann, Oliver; Cazelles, Bernard (2011). "Explaining rapid reinfections in multiple-wave influenza outbreaks: Tristan da Cunha 1971 epidemic as a case study". Proceedings of the Royal Society B: Biological Sciences (Prepublished Online). 278 (1725): 3635–3643. doi:10.1098/rspb.2011.0300. PMC 3203494. PMID 21525058.{{cite journal}}: CS1 maint: date and year (link)
  7. ^ Laneri, K. (2010). "Forcing versus feedback: Epidemic malaria and monsoon rains in NW India". PLOS Computational Biology. 6: e1000898. doi:10.1371/journal.pcbi.1000898. PMID PMC2932675. {{cite journal}}: Check |pmid= value (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)CS1 maint: unflagged free DOI (link)
  8. ^ He, D. (2010). "Plug-and-play inference for disease dynamics: measles in large and small towns as a case study". Journal of the Royal Society Interface. 7: 271–283. doi:10.1098/rsif.2009.0151. PMID PMC2842609. {{cite journal}}: Check |pmid= value (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)
  9. ^ Ionides, E. L.. (2011). "Discussion on "Feature Matching in Time Series Modeling" by Y. Xia and H. Tong". Statistical Science (In Press). 26. doi:10.1214/11-STS345C.
  10. ^ "Discussion of "Particle Markov chain Monte Carlo methods" by C. Andrieu, A. Doucet and R. Holenstein". Journal of the Royal Statistical Society, Series B (Statistical Methodology). 72: 314–315. 2010. doi:10.1111/j.1467-9868.2009.00736.x.