Female fertility agents edit

Female fertility agents are medications that improve female’s ability to conceive pregnancy. These agents are prescribed for infertile female who fails to conceive pregnancy after 1-year of regular and unprotected sexual intercourse.[1] The following will cover the advancements of female fertility agents, major causes of female infertility. Next, it emphasizes on common female fertility agents in terms of their mechanism of action, side effects, fetal consideration and clinical application and ended up by the introduction of supplements and herbal medicines for female infertility.

History of female fertility agents: edit

In 1931, the first commercially available human chorionic gonadotropin (hCG) was launched [2], which marked the first emergence of female fertility agents. Subsequently, clomiphene citrate was discovered in 1951, which was then approved by the Food and Drug Administration (FDA) in 1967 [3]. In 1978, bromocriptine gained FDA approval for hyperprolactinemia and later proved effective in treating prolactinemia-related infertility.[4]As a breakthrough, hMG/hCG protocols for pre-IVF treatment were introduced.[2]

The first recombinant human follicle-stimulating hormone (r-hFSH) received EU approval in 1995, followed by the approval of recombinant human luteinizing hormone (rhLH) and recombinant human chorionic gonadotropin (rhCG) in 2000. [2]

 
History of development of Clomiphene citrate, aromatase inhibitor, Metformin & dopamine agonist

Meanwhile, in the 2000s, there were clinical trials exploring the effectiveness of the aromatase inhibitor letrozole for infertility treatment.[5] Besides, there were ongoing epidemiological studies examining the phenotypic differences associated with prenatal exposure to metformin.[6]

Causes edit

Female infertility can be caused by multiple factors, such as ovulatory disorders, structural abnormalities in reproductive organs and aging.

1. Ovulatory disorders edit

Ovulatory disorders result in infrequent ovulation (Oligoovulation) or absent ovulation (anovulation) which causes infertility. The World Health Organisation (WHO) has classified anovulation into three main classes, which are hypogonadotropic hypogonadal anovulation (Class 1), normogonadotropic normoestrogenic anovulation (Class 2), and hypergonadotropic hypoestrogenic anovulation (Class 3). Apart from the three classes, hyperprolactinemic anovulation is also identified as one of the etiologies.[7][8]

2. Structural abnormalities edit

 
Animation of Fallopian tube

More refer to Tubal Factor Infertility

 
Image of uterine malformation

Structural abnormalities in female reproductive organs will lead to infertility. Abnormalities in Fallopian tube, either blockage or injuries will prevent fertilization and/or implantation. Besides, anomalies in uterus, commonly caused by Müllerian anomalies [9]will cause failure in implantation.

3. Aging edit

More refer to Age and female fertility

Female fertility declines with aging due to the decreased quantity and quality of oocytes. It is noticed that the number of follicles reduces rapidly after the age of 37 when close to menopause, resulting in a natural decline in fertility. [10]

Medication edit

1. Gonadotropin therapy edit

Drug action edit

Female gonadotropins include follicle stimulating hormone (FSH), luteinizing hormone (LH), and human chorionic gonadotropin (hCG). Gonadotropin therapy refers to the administration of exogenous gonadotropins to treat anovulation. [11] Gonadotropin therapy is given via intrauterine insemination (IUI) and in vitro fertilization (IVF) to exert its effects. [12] FSH promotes the recruitment and maturation of early antral follicles, while LH helps follicular development and maturation. [12] Both FSH and LH regulate the length and order of the menstrual cycle in female. [12] HCG aids the ultimate follicular maturation and growth of the immature oocyte in meiosis and in the luteal phase. [13][14]

Side effects edit

Gonadotropin treatment may induce ovarian hyperstimulation syndrome due to several enlarged follicles. The enlarged ovaries will lead to severe abdominal pain, vomiting, clotting in the lungs and legs along with fluid imbalance.  [15]

Fetal considerations edit

Gonadotropin therapy has a higher tendency to cause multiple pregnancy when compared to clomiphene and aromatase inhibitors. [16]Multiple pregnancy may increase the risks of preterm birth and decreased gestational age, which are associated with fetal complications and higher infant mortality. [16]

Clinical use edit

Gonadotropin therapy can be given to female who have ovulatory failure and irregular ovulation as second-line treatment. It can be given to female who has normal ovulation but fails to conceive by in vitro fertilization (IVF) to boost the production of more follicles in the ovaries.[17] For patients with polycystic ovary syndrome (PCOS), gonadotropin is not an initial treatment choice. [17] During early stage of Gonadotrophin therapy, blood testing and pelvic ultrasound are performed to confirm the absence of large ovarian cysts. [17]The treatment initiation and dosage of gonadotropin will be instructed depending on the outcome of the tests.[17] During the therapy, regular blood testing and pelvic ultrasound is required. Discontinuation of the therapy is required if more than three large follicles are detected in pelvic ultrasound.[17]

2. Clomiphene edit

 
Chemical structure of Clomiphene

Drug action edit

Clomiphene acts on the hypothalamus. By occupying intracellular estrogen receptors (ERs), receptor recycling is interfered. [18] This inhibits hypothalamic ERs and hence interrupts normal estrogenic negative feedback. As a result, Gonadotropin-releasing hormone pulsation occurs which induces the release of pituitary gonadotropin to boost follicular growth and trigger ovulation. [18]

Side effects edit

Common side effects include ovarian enlargement, hot flash, abdominal distention, breast discomfort, and hyperlipidemia. Rare adverse effects are ovarian hyperstimulation syndrome and visual abnormalities. [19] Long-term use may raise risk of ovarian cancer, such that long-term therapy (more than 6 cycles) is not recommended.[20][21]

Fetal considerations edit

Compared to the general population, clomiphene does not exhibit a tendency toward increasing the risk of miscarriages or harmful fetal abnormalities. For breastfeeding consideration, a study found that clomiphene effectively suppresses lactation, which can be explained by prolactin inhibition.[22] It is reported that clomiphene is present in breast milk, maximum content of breast milk recorded was 582.5 ng/mL which is still be considered as acceptable when relative infant dose of a drug is less than 10%. [23][24] Nevertheless, breastfeeding is still debatable due to lack of clinical evidence.

Clinical use edit

 
Polycystic ovary syndrome

Clomiphene is initiated for use in patients with polycystic ovary syndrome, psychogenic amenorrhea, post-oral contraceptive amenorrhea, and secondary amenorrhea of unidentified cause.[25] Serum estrogen should be measured prior to therapy which rules out primary pituitary or ovarian failure, endometrial carcinoma, hyperprolactinaemia.[25]

 
Chemical structure of Letrozole

3. Aromatase Inhibitors: Letrozole edit

Drug action edit

Among all aromatase inhibitors, Letrozole is commonly used for improving female fertility. It works by inhibiting aromatase which is an enzyme that catalyses the conversion of androstenedione and testosterone to estrogen by hydroxylation. Hence, Letrozole inhibits the synthesis of estrogen[26]. The hypoestrogenic state boosts the release of gonadotropin-release hormone and raises the synthesis of FSH in pituitary gland.[27]

Side effects edit

 
Example of tenosynovitis

Common side effects include bone fracture due to bone mineral density loss, ischemic cardiovascular events like angina pectoris, acute myocardial infarction, and musculoskeletal effects for instance arthralgia and tenosynovitis.[28][29][30][31][32][33]

Fetal considerations edit

Letrozole raises concern regarding its teratogenicity. It is potentially teratogenic if administered unintentionally during early stages of pregnancy as they can interrupt with normal Aromatase activity in embryonic development indicated in animal experiments.[34]However, teratogenicity is not observed with an increase tend compared to clomiphene.[35][36][37]In addition, it is stated in a systematic review and meta-analysis that letrozole does not associate with congenital fetal malformation or miscarriage compared to clomiphene, gonadotropin and natural conception.[38]

Clinical use edit

Besides being a first-line medication for hormone receptor-positive breast cancer, it also acts as an off-label agent for ovulation induction in patients with polycystic ovary syndrome and anovulatory infertility in recent years. [39][40]It is stated that letrozole therapy leads to greater birth rates compared to clomiphene in a randomized trial and meta-analysis with large sample of anovulatory women.[41][42]

 
Chemical structure of Metformin

4. Metformin edit

Drug action edit

Metformin lowers the synthesis of glucose in liver and absorption of glucose from intestines. It also acquires an antilipolytic effect which reduces free fatty acid concentration. It is proved in many trials that Metformin can normalize menstrual function and raise the chance of ovulation.[43][44]

Side effects edit

Common side effects are gastrointestinal discomfort, for example flatulence, indigestion, nausea and vomiting which are reversible by dosage adjustment and discontinuation.[45]

Fetal considerations edit

 
Table of complete blood count

Metformin reduces intestinal absorption of vitamin B12 and also serum vitamin B12 concentration, thus patients are recommended to monitor B12 deficiency with complete blood count.[46] Regarding breastfeeding, metformin does not show obvious association with adverse outcomes.[47] In addition, metformin is not associated with a raised chance of major birth abnormalites in female with PCOS. [48]

Clinical use edit

 
Procedures of In-vitro Fertilization

Metformin is often used as second-line treatment especially in PCOS patients are contraindicated to treatment of combined estrogen-progestogen oral contraceptives (COCs). It is proved that Metformin can restore ovulatory menses in PCOS in numerous trials. 13 trials are studies in a meta-analysis, fourfold increase of ovulation is revealed when using clomiphene with metformin compared to using clomiphene alone.[49][50][51]In addition, Metformin can be administered for IVF pretreatment, the number of retrieved oocytes is greatly lowered. Moreover, ovarian hyperstimulation syndrome (OHSS) is prevented.[52][53][54][55]

5. Dopamine agonist—Cabergoline and Bromocriptine edit

Drug action edit

Dopamine agonists, cabergoline and bromocriptine bind to specific dopamine receptors to block the secretion pathway of prolactin and shrink the size of tumor (prolactinoma), which subsequently treat infertility caused by elevated level of prolactin.[56](See also : Hyperprolactinaemia)

 
Chemical structure of Bromocriptine

Bromocriptine possesses both dopamine 2 receptor agonistic and dopamine 1 receptor antagonistic properties. It is an ergot derivative, which directly binds to the postsynaptic dopamine 2 receptors of anterior pituitary cells and inhibits the secretion of prolactin.[56][57]

 
Chemical structure of cabergoline

Cabergoline is a dopamine 2 receptor agonist which is also an ergot derivative. It functions similarly to bromocriptine but with higher selectivity and affinity than bromocriptine. [56][58]

Side effects edit

The major side effects of dopamine agonists include nausea, vomiting , arrhythmia and postural hypotension.[59]Other adverse effects for instance impulse-control disorder and valvular heart disease are less frequently resulted.[60][61]

Fetal considerations edit

Dopamine agonists are usually discontinued once the patient is pregnant. Based on existing data and studies, the exposure of fetus to dopamine agonists during the early stage of pregnancy does not harm the foetus. Both bromocriptine and cabergoline are considered to be safe with no identifiable risk of inducing congenital deformity, miscarriage and premature birth.[62]

Clinical use edit

Dopamine agonists for infertility treatment are commonly administered to hyperprolactinemic anovulation patients. Both bromocriptine and cabergoline are the first-line dopamine agonist in hyperprolactinemia treatment.[63]Cabergoline is currently more preferred than bromocrptine due to its higher efficacy and fewer side effects like nausea.[64]

Supplements edit

 
Chemical structure of Coenzyme Q10

Coenzyme Q10 edit

Coenzyme Q10 is a natural antioxidant. It is stated in randomized trials that its supplementation increases the number of oocytes, which contributes to a greater fertilization rate and improved embryonic development in women with suboptimal ovarian reserve parameters. [65]

Myoinositol edit

It is a naturally existing substance that is involved in both insulin and gonadotropin signaling, which is associated with follicle maturation. Multiple researches have indicated that myoinositol supplementation in poor ovarian responders can improve fertilization rate and ovarian sensitivity index (OSI).[66]

Herbal medicines edit

Chasteberry (Vitex agnus castus) edit

The extracts of vitex agnus castus (VAC) improve premenstrual symptoms, especially premenstrual mastodynis (breast pain) which is caused by hyperprolactinemia and hence explains female infertility. In addition, low progesterone level is also attributed to female infertility. Combination of VAC extracts and medication can normalize the levels of prolactin and progesterone. Therefore, Chasteberry alleviates infertility condition.[67]

Red Clover (Trifolium pratense) edit

The red clover extracts contain several phytoestrogenic compounds, which stimulate the production of female hormone and bind to the beta estrogen receptor so as to mitigate the menopausal symptoms.[68]Due to the presence of phytoestrogenic compounds, red clover extract can raise estrogen level and thus trigger ovulation and aid fertility.[69]

Reference edit

  1. ^ Vander Borght, Mélodie; Wyns, Christine (Dec 2018). "Fertility and infertility: Definition and epidemiology". Clinical Biochemistry. 62: 2–10. doi:10.1016/j.clinbiochem.2018.03.012.
  2. ^ a b c Lunenfeld, Bruno; Bilger, Wilma; Longobardi, Salvatore; Alam, Veronica; D'Hooghe, Thomas; Sunkara, Sesh K. (Jul 2019). "The Development of Gonadotropins for Clinical Use in the Treatment of Infertility". Frontiers in Endocrinology. 10: 429. doi:10.3389/fendo.2019.00429. ISSN 1664-2392. PMC 6616070. PMID 31333582.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  3. ^ "Clomiphene Citrate | Embryo Project Encyclopedia". embryo.asu.edu. Retrieved 2024-04-08.
  4. ^ "Bromocriptine - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 2024-04-08.
  5. ^ Franik, Sebastian; Kremer, Jan AM; Nelen, Willianne LDM; Farquhar, Cindy (2012-12-12), The Cochrane Collaboration (ed.), "Aromatase inhibitors for subfertile women with polycystic ovary syndrome", Cochrane Database of Systematic Reviews, Chichester, UK: John Wiley & Sons, Ltd, doi:10.1002/14651858.cd010287, retrieved 2024-04-08
  6. ^ Faure, Melanie; Bertoldo, Michael J.; Khoueiry, Rita; Bongrani, Alice; Brion, François; Giulivi, Cecilia; Dupont, Joelle; Froment, Pascal (2018). "Metformin in Reproductive Biology". Frontiers in Endocrinology. 9. doi:10.3389/fendo.2018.00675/full. ISSN 1664-2392.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  7. ^ Dhont, Marc (2005-04-01). "WHO-classification of anovulation: background, evidence and problems". International Congress Series. Gynaecology, Obstetrics, and Reproductive Medicine in Daily Practice. 1279: 3–9. doi:10.1016/j.ics.2004.12.028. ISSN 0531-5131.
  8. ^ "World Health Organization classification of anovulation - Uptodate Free". pro.uptodatefree.ir. Retrieved 2024-04-07.
  9. ^ "Diagnosing and Treating Müllerian Anomalies". www.childrenscolorado.org. Retrieved 2024-04-07.
  10. ^ George, Korula; Kamath, Mohan S (2010). "Fertility and age". Journal of Human Reproductive Sciences. 3 (3): 121–123. doi:10.4103/0974-1208.74152. ISSN 0974-1208. PMC 3017326. PMID 21234171.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  11. ^ Leão, Rogério de Barros F.; Esteves, Sandro C. (April 2014). "Gonadotropin therapy in assisted reproduction: an evolutionary perspective from biologics to biotech". Clinics. 69 (4): 279–293. doi:10.6061/clinics/2014(04)10. ISSN 1807-5932. PMC 3971356. PMID 24714837.
  12. ^ a b c Nedresky, Daniel; Singh, Gurdeep (2024), "Physiology, Luteinizing Hormone", StatPearls, Treasure Island (FL): StatPearls Publishing, PMID 30969514, retrieved 2024-04-07
  13. ^ Wu, Hsien-Ming; Chang, Hsun-Ming; Leung, Peter C. K. (2021-01-01). "Gonadotropin-releasing hormone analogs: Mechanisms of action and clinical applications in female reproduction". Frontiers in Neuroendocrinology. 60: 100876. doi:10.1016/j.yfrne.2020.100876. ISSN 0091-3022.
  14. ^ Lunenfeld, Bruno; Bilger, Wilma; Longobardi, Salvatore; Alam, Veronica; D'Hooghe, Thomas; Sunkara, Sesh K. (2019-07-03). "The Development of Gonadotropins for Clinical Use in the Treatment of Infertility". Frontiers in Endocrinology. 10: 429. doi:10.3389/fendo.2019.00429. ISSN 1664-2392. PMC 6616070. PMID 31333582.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  15. ^ "UpToDate". www.uptodate.com. Retrieved 2024-04-07.
  16. ^ a b Diamond, M.P.; Legro, R.S.; Coutifaris, C.; Alvero, R.; Robinson, R.D.; Casson, P.; Christman, G.M.; Ager, J.; Huang, H.; Hansen, K.R.; Baker, V.; Usadi, R.; Seungdamrong, A.; Bates, G.W.; Rosen, R.M. (2015-09-24). "Letrozole, Gonadotropin, or Clomiphene for Unexplained Infertility". The New England journal of medicine. 373 (13): 1230–1240. doi:10.1056/NEJMoa1414827. ISSN 0028-4793. PMC 4739644. PMID 26398071.
  17. ^ a b c d e "UpToDate". www.uptodate.com. Retrieved 2024-04-07.
  18. ^ a b Schlegel, Peter N.; Sigman, Mark; Collura, Barbara; De Jonge, Christopher J.; Eisenberg, Michael L.; Lamb, Dolores J.; Mulhall, John P.; Niederberger, Craig; Sandlow, Jay I.; Sokol, Rebecca Z.; Spandorfer, Steven D.; Tanrikut, Cigdem; Treadwell, Jonathan R.; Oristaglio, Jeffrey T.; Zini, Armand (Jan 2021). "Diagnosis and treatment of infertility in men: AUA/ASRM guideline part II". Fertility and Sterility. 115 (1): 62–69. doi:10.1016/j.fertnstert.2020.11.016.
  19. ^ Fiedler, Klaus; Ezcurra, Diego (2012). "Predicting and preventing ovarian hyperstimulation syndrome (OHSS): the need for individualized not standardized treatment". Reproductive Biology and Endocrinology. 10 (1): 32. doi:10.1186/1477-7827-10-32. ISSN 1477-7827. PMC 3403873. PMID 22531097.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  20. ^ Fiedler, Klaus; Ezcurra, Diego (2012). "Predicting and preventing ovarian hyperstimulation syndrome (OHSS): the need for individualized not standardized treatment". PubMed. 10 (1): 32. doi:10.1186/1477-7827-10-32. ISSN 1477-7827. PMC 3403873. PMID 22531097 – via Reproductive Biology and Endocrinology.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  21. ^ Smithson, David S.; Vause, Tannys D.R.; Cheung, Anthony P. (Jul 2018). "No. 362-Ovulation Induction in Polycystic Ovary Syndrome". Journal of Obstetrics and Gynaecology Canada. 40 (7): 978–987. doi:10.1016/j.jogc.2017.12.004.
  22. ^ "Clomiphene and Breastfeeding | InfantRisk Center". www.infantrisk.com. Retrieved 2024-04-06.
  23. ^ Monfort, Anaëlle; Jutras, Martin; Martin, Brigitte; Boucoiran, Isabelle; Ferreira, Ema; Leclair, Grégoire (Sep 2021). "Simultaneous quantification of 19 analytes in breast milk by liquid chromatography-tandem mass spectrometry (LC-MS/MS)". Journal of Pharmaceutical and Biomedical Analysis. 204: 114236. doi:10.1016/j.jpba.2021.114236.
  24. ^ Anderson, Po; Sauberan, Jb (Jul 2016). "Modeling drug passage into human milk". Clinical Pharmacology & Therapeutics. 100 (1): 42–52. doi:10.1002/cpt.377. ISSN 0009-9236.
  25. ^ a b Smithson, David S.; Vause, Tannys D.R.; Cheung, Anthony P. (Jul 2018). "No. 362-Ovulation Induction in Polycystic Ovary Syndrome". Journal of Obstetrics and Gynaecology Canada. 40 (7): 978–987. doi:10.1016/j.jogc.2017.12.004.
  26. ^ Cole, Philip A.; Robinson, Cecil H. (Nov 1990). "Mechanism and inhibition of cytochrome P-450 aromatase". Journal of Medicinal Chemistry. 33 (11): 2933–2942. doi:10.1021/jm00173a001. ISSN 0022-2623.
  27. ^ Requena, A.; Herrero, J.; Landeras, J.; Navarro, E.; Neyro, J. L.; Salvador, C.; Tur, R.; Callejo, J.; Checa, M. A.; Farre, M.; Espinos, J. J.; Fabregues, F.; Grana-Barcia, M. (2008-09-29). "Use of letrozole in assisted reproduction: a systematic review and meta-analysis". Human Reproduction Update. 14 (6): 571–582. doi:10.1093/humupd/dmn033. ISSN 1355-4786. PMC 2569859. PMID 18812422.{{cite journal}}: CS1 maint: PMC format (link)
  28. ^ Buzdar, Aman U.; Robertson, John F. R.; Eiermann, Wolfgang; Nabholtz, Jean‐Marc (Nov 2002). "An overview of the pharmacology and pharmacokinetics of the newer generation aromatase inhibitors anastrozole, letrozole, and exemestane". Cancer. 95 (9): 2006–2016. doi:10.1002/cncr.10908. ISSN 0008-543X.
  29. ^ Perez, Edith A.; Josse, Robert G.; Pritchard, Kathleen I.; Ingle, James N.; Martino, Silvana; Findlay, Brian P.; Shenkier, Tamara N.; Tozer, Richard G.; Palmer, Michael J.; Shepherd, Lois E.; Liu, Shifang; Tu, Dongsheng; Goss, Paul E. (2006-08-01). "Effect of Letrozole Versus Placebo on Bone Mineral Density in Women With Primary Breast Cancer Completing 5 or More Years of Adjuvant Tamoxifen: A Companion Study to NCIC CTG MA.17". Journal of Clinical Oncology. 24 (22): 3629–3635. doi:10.1200/JCO.2005.05.4882. ISSN 0732-183X.
  30. ^ Zaman, K.; Thürlimann, B.; Huober, J.; Schönenberger, A.; Pagani, O.; Lüthi, J.; Simcock, M.; Giobbie-Hurder, A.; Berthod, G.; Genton, C.; Brauchli, P.; Aebi, S. (Jun 2012). "Bone mineral density in breast cancer patients treated with adjuvant letrozole, tamoxifen, or sequences of letrozole and tamoxifen in the BIG 1-98 study (SAKK 21/07)". Annals of Oncology. 23 (6): 1474–1481. doi:10.1093/annonc/mdr448.
  31. ^ Crew, Katherine D.; Greenlee, Heather; Capodice, Jillian; Raptis, George; Brafman, Lois; Fuentes, Deborah; Sierra, Alex; Hershman, Dawn L. (2007-09-01). "Prevalence of Joint Symptoms in Postmenopausal Women Taking Aromatase Inhibitors for Early-Stage Breast Cancer". Journal of Clinical Oncology. 25 (25): 3877–3883. doi:10.1200/JCO.2007.10.7573. ISSN 0732-183X.
  32. ^ Henry, N. Lynn; Giles, Jon T.; Ang, Dennis; Mohan, Monika; Dadabhoy, Dina; Robarge, Jason; Hayden, Jill; Lemler, Suzanne; Shahverdi, Karineh; Powers, Penny; Li, Lang; Flockhart, David; Stearns, Vered; Hayes, Daniel F.; Storniolo, Anna Maria (Sep 2008). "Prospective characterization of musculoskeletal symptoms in early stage breast cancer patients treated with aromatase inhibitors". Breast Cancer Research and Treatment. 111 (2): 365–372. doi:10.1007/s10549-007-9774-6. ISSN 0167-6806. PMC 3081690. PMID 17922185.{{cite journal}}: CS1 maint: PMC format (link)
  33. ^ Niravath, P. (Jun 2013). "Aromatase inhibitor-induced arthralgia: a review". Annals of Oncology. 24 (6): 1443–1449. doi:10.1093/annonc/mdt037.
  34. ^ Tiboni, Gian Mario (April 2004). "Aromatase inhibitors and teratogenesis". Fertility and Sterility. 81 (4): 1158–1159. doi:10.1016/j.fertnstert.2004.01.006. ISSN 0015-0282.
  35. ^ Tiboni, Gian Mario (April 2004). "Aromatase inhibitors and teratogenesis". Fertility and Sterility. 81 (4): 1158–1159. doi:10.1016/j.fertnstert.2004.01.006. ISSN 0015-0282.
  36. ^ "Role of Letrozole Versus Clomiphene Citrate in Induction of Ovulation in Patients with Polycystic Ovarian Syndrome". Journal of Gynecology & Reproductive Medicine. 1 (1). 2017-07-03. doi:10.33140/jgrm/01/01/00010. ISSN 2576-2842.
  37. ^ Tatsumi, T.; Jwa, S.C.; Kuwahara, A.; Irahara, M.; Kubota, T.; Saito, H. (2016-11-07). "No increased risk of major congenital anomalies or adverse pregnancy or neonatal outcomes following letrozole use in assisted reproductive technology". Human Reproduction. doi:10.1093/humrep/dew280. ISSN 0268-1161.
  38. ^ "Risk of foetal harm wit letrozole use in fertility treatment: a systematic review and meta-analysis". academic.oup.com. Retrieved 2024-04-06.
  39. ^ "Polycystic Ovary Syndrome: ACOG Practice Bulletin, Number 194". Obstetrics & Gynecology. 131 (6): e157–e171. Jun 2018. doi:10.1097/AOG.0000000000002656. ISSN 0029-7844.
  40. ^ Misso, M. L.; Wong, J. L. A.; Teede, H. J.; Hart, R.; Rombauts, L.; Melder, A. M.; Norman, R. J.; Costello, M. F. (2012-03-19). "Aromatase inhibitors for PCOS: a systematic review and meta-analysis". Human Reproduction Update. 18 (3): 301–312. doi:10.1093/humupd/dms003. ISSN 1355-4786.
  41. ^ Legro, Richard S.; Barnhart, Huiman X.; Schlaff, William D.; Carr, Bruce R.; Diamond, Michael P.; Carson, Sandra A.; Steinkampf, Michael P.; Coutifaris, Christos; McGovern, Peter G.; Cataldo, Nicholas A.; Gosman, Gabriella G.; Nestler, John E.; Giudice, Linda C.; Leppert, Phyllis C.; Myers, Evan R. (2007-02-08). "Clomiphene, Metformin, or Both for Infertility in the Polycystic Ovary Syndrome". New England Journal of Medicine. 356 (6): 551–566. doi:10.1056/NEJMoa063971. ISSN 0028-4793.
  42. ^ Franik, Sebastian; Eltrop, Stephanie M; Kremer, Jan AM; Kiesel, Ludwig; Farquhar, Cindy (2018-05-24). Cochrane Gynaecology and Fertility Group (ed.). "Aromatase inhibitors (letrozole) for subfertile women with polycystic ovary syndrome". Cochrane Database of Systematic Reviews. 2018 (5). doi:10.1002/14651858.CD010287.pub3.
  43. ^ Ferrannini, Ele (2014-10-16). "The Target of Metformin in Type 2 Diabetes". New England Journal of Medicine. 371 (16): 1547–1548. doi:10.1056/nejmcibr1409796. ISSN 0028-4793.
  44. ^ Madiraju, Anila K.; Erion, Derek M.; Rahimi, Yasmeen; Zhang, Xian-Man; Braddock, Demetrios T.; Albright, Ronald A.; Prigaro, Brett J.; Wood, John L.; Bhanot, Sanjay; MacDonald, Michael J.; Jurczak, Michael J.; Camporez, Joao-Paulo; Lee, Hui-Young; Cline, Gary W.; Samuel, Varman T. (2014-05-21). "Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase". Nature. 510 (7506): 542–546. doi:10.1038/nature13270. ISSN 0028-0836.
  45. ^ Bouchoucha, M.; Uzzan, B.; Cohen, R. (2011-04-01). "Metformin and digestive disorders". Diabetes & Metabolism. 37 (2): 90–96. doi:10.1016/j.diabet.2010.11.002. ISSN 1262-3636.
  46. ^ Niafar, Mitra; Hai, Faizi; Porhomayon, Jahan; Nader, Nader Djalal (2014-12-13). "The role of metformin on vitamin B12 deficiency: a meta-analysis review". Internal and Emergency Medicine. 10 (1): 93–102. doi:10.1007/s11739-014-1157-5. ISSN 1828-0447.
  47. ^ Glueck, Charles J; Wang, Ping (Mar 2007). "Metformin before and during pregnancy and lactation in polycystic ovary syndrome". Expert Opinion on Drug Safety. 6 (2): 191–198. doi:10.1517/14740338.6.2.191. ISSN 1474-0338.
  48. ^ Cassina, Matteo; Donà, Marta; Di Gianantonio, Elena; Litta, Pietro; Clementi, Maurizio (2014-05-25). "First-trimester exposure to metformin and risk of birth defects: a systematic review and meta-analysis". Human Reproduction Update. 20 (5): 656–669. doi:10.1093/humupd/dmu022. ISSN 1355-4786.
  49. ^ Moghetti, Paolo; Castello, Roberto; Negri, Carlo; Tosi, Flavia; Perrone, Fabrizia; Caputo, Marco; Zanolin, Elisabetta; Muggeo, Michele (Jun 2000). "Metformin Effects on Clinical Features, Endocrine and Metabolic Profiles, and Insulin Sensitivity in Polycystic Ovary Syndrome: A Randomized, Double-Blind, Placebo-Controlled 6-Month Trial, Followed by Open, Long-Term Clinical Evaluation". Obstetrical & Gynecological Survey. 55 (6): 365–366. doi:10.1097/00006254-200006000-00019. ISSN 0029-7828.
  50. ^ Yang, Po-Kai; Hsu, Chih-Yuan; Chen, Mei-Jou; Lai, Mei-Yu; Li, Zheng-Rong; Chen, Chen-Hsin; Chen, Shee-Uan; Ho, Hong-Nerng (2018-01-09). "The Efficacy of 24-Month Metformin for Improving Menses, Hormones, and Metabolic Profiles in Polycystic Ovary Syndrome". The Journal of Clinical Endocrinology & Metabolism. 103 (3): 890–899. doi:10.1210/jc.2017-01739. ISSN 0021-972X.
  51. ^ Tang, Thomas; Lord, Jonathan M; Norman, Robert J; Yasmin, Ephia; Balen, Adam H (2010-01-20), "Insulin-sensitising drugs (metformin, rosiglitazone, pioglitazone, D-chiro-inositol) for women with polycystic ovary syndrome, oligo amenorrhoea and subfertility", Cochrane Database of Systematic Reviews, Chichester, UK: John Wiley & Sons, Ltd, retrieved 2024-04-06
  52. ^ Abdalmageed, Osama S.; Farghaly, Tarek A.; Abdelaleem, Ahmed A.; Abdelmagied, Ahmed E.; Ali, Mohammed K.; Abbas, Ahmed M. (Oct 2019). "Impact of Metformin on IVF Outcomes in Overweight and Obese Women With Polycystic Ovary Syndrome: A Randomized Double-Blind Controlled Trial". Reproductive Sciences. 26 (10): 1336–1342. doi:10.1177/1933719118765985. ISSN 1933-7191.
  53. ^ Tso, L O; Costello, Michael F; Andriolo, Régis B; Freitas, Vilmon (2009-04-15), "Metformin treatment before and during IVF or ICSI in women with polycystic ovary syndrome", Cochrane Database of Systematic Reviews, Chichester, UK: John Wiley & Sons, Ltd, retrieved 2024-04-06
  54. ^ Palomba, S; Falbo, A; La Sala, GB (2012-11-30). "Effects of metformin in women with polycystic ovary syndrome treated with gonadotrophins for in vitro fertilisation and intracytoplasmic sperm injection cycles: a systematic review and meta‐analysis of randomised controlled trials". BJOG: An International Journal of Obstetrics & Gynaecology. 120 (3): 267–276. doi:10.1111/1471-0528.12070. ISSN 1470-0328.
  55. ^ Palomba, Stefano; Falbo, Angela; Carrillo, Laura; Villani, Maria Teresa; Orio, Francesco; Russo, Tiziana; Di Cello, Annalisa; Cappiello, Fulvio; Capasso, Sabina; Tolino, Achille; Colao, Annamaria; Mastrantonio, Pasquale; La Sala, Giovanni Battista; Zullo, Fulvio; Cittadini, Ettore (Dec 2011). "Metformin reduces risk of ovarian hyperstimulation syndrome in patients with polycystic ovary syndrome during gonadotropin-stimulated in vitro fertilization cycles: a randomized, controlled trial". Fertility and Sterility. 96 (6): 1384–1390.e4. doi:10.1016/j.fertnstert.2011.09.020. ISSN 0015-0282.
  56. ^ a b c Liu, Xiaoshuang; Tang, Chao; Wen, Guodao; Zhong, Chunyu; Yang, Jin; Zhu, Junhao; Ma, Chiyuan (2019-01-22). "The Mechanism and Pathways of Dopamine and Dopamine Agonists in Prolactinomas". Frontiers in Endocrinology. 9: 768. doi:10.3389/fendo.2018.00768. ISSN 1664-2392. PMC 6357924. PMID 30740089.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  57. ^ "Bromocriptine - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 2024-04-07.
  58. ^ Verhelst, Johan; Abs, Roger; Maiter, Dominique; van den Bruel, Annick; Vandeweghe, Mark; Velkeniers, Brigitte; Mockel, Jean; Lamberigts, Gerard; Petrossians, Patrick; Coremans, Peter; Mahler, Charles; Stevenaert, Achille; Verlooy, Jan; Raftopoulos, Christian; Beckers, Albert (1999-07-01). "Cabergoline in the Treatment of Hyperprolactinemia: A Study in 455 Patients". The Journal of Clinical Endocrinology & Metabolism. 84 (7): 2518–2522. doi:10.1210/jcem.84.7.5810. ISSN 0021-972X.
  59. ^ Choi, Jaehwa; Horner, Kristen Ashley (2024), "Dopamine Agonists", StatPearls, Treasure Island (FL): StatPearls Publishing, PMID 31869150, retrieved 2024-04-07
  60. ^ Dogansen, Sema Ciftci; Cikrikcili, Ugur; Oruk, Gonca; Kutbay, Nilufer Ozdemir; Tanrikulu, Seher; Hekimsoy, Zeliha; Hadzalic, Aysa; Gorar, Suheyla; Omma, Tulay; Mert, Meral; Akbaba, Gulhan; Yalin, Gulsah Yenidunya; Bayram, Fahri; Ozkan, Mine; Yarman, Sema (2019-07-01). "Dopamine Agonist-Induced Impulse Control Disorders in Patients With Prolactinoma: A Cross-Sectional Multicenter Study". The Journal of Clinical Endocrinology and Metabolism. 104 (7): 2527–2534. doi:10.1210/jc.2018-02202. ISSN 1945-7197. PMID 30848825.
  61. ^ Schade, René; Andersohn, Frank; Suissa, Samy; Haverkamp, Wilhelm; Garbe, Edeltraut (2007-01-04). "Dopamine Agonists and the Risk of Cardiac-Valve Regurgitation". New England Journal of Medicine. 356 (1): 29–38. doi:10.1056/NEJMoa062222. ISSN 0028-4793.
  62. ^ Ricci, Elena; Parazzini, Fabio; Motta, Tiziano; Ferrari, Carlo I.; Colao, Annamaria; Clavenna, Antonio; Rocchi, Francesca; Gangi, Emanuela; Paracchi, Sandra; Gasperi, Maurizio; Lavezzari, Maurizio; Nicolosi, Anna Elisa; Ferrero, Simona; Landi, Maria Luisa; Beck-Peccoz, Paolo (2002). "Pregnancy outcome after cabergoline treatment in early weeks of gestation". Reproductive Toxicology (Elmsford, N.Y.). 16 (6): 791–793. doi:10.1016/s0890-6238(02)00055-2. ISSN 0890-6238. PMID 12401507.
  63. ^ Liu, Xiaoshuang; Tang, Chao; Wen, Guodao; Zhong, Chunyu; Yang, Jin; Zhu, Junhao; Ma, Chiyuan (2019-01-22). "The Mechanism and Pathways of Dopamine and Dopamine Agonists in Prolactinomas". Frontiers in Endocrinology. 9: 768. doi:10.3389/fendo.2018.00768. ISSN 1664-2392. PMC 6357924. PMID 30740089.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  64. ^ Nunes, V. dos Santos; Dib, R. El; Boguszewski, C. L.; Nogueira, C. R. (2011), "Cabergoline versus bromocriptine in the treatment of hyperprolactinemia: a systematic review of randomized controlled trials and meta-analysis", Database of Abstracts of Reviews of Effects (DARE): Quality-assessed Reviews [Internet], Centre for Reviews and Dissemination (UK), PMID 21221817, retrieved 2024-04-07
  65. ^ Xu, Yangying; Nisenblat, Victoria; Lu, Cuiling; Li, Rong; Qiao, Jie; Zhen, Xiumei; Wang, Shuyu (2018-03-27). "Pretreatment with coenzyme Q10 improves ovarian response and embryo quality in low-prognosis young women with decreased ovarian reserve: a randomized controlled trial". Reproductive Biology and Endocrinology. 16 (1): 29. doi:10.1186/s12958-018-0343-0. ISSN 1477-7827.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  66. ^ Mohammadi, Sahar; Eini, Fatemeh; Bazarganipour, Fatemeh; Taghavi, Seyed Abdolvahab; Kutenaee, Maryam Azizi (April 2021). "The effect of Myo-inositol on fertility rates in poor ovarian responder in women undergoing assisted reproductive technique: a randomized clinical trial". Springer link. 19 (1): 61. doi:10.1186/s12958-021-00741-0. ISSN 1477-7827.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  67. ^ Seidlova-Wuttke, Dana; Wuttke, Wolfgang (2017-03-22). "The premenstrual syndrome, premenstrual mastodynia, fibrocystic mastopathy and infertility have often common roots: effects of extracts of chasteberry (Vitex agnus castus) as a solution". Clinical Phytoscience. 3 (1): 6. doi:10.1186/s40816-016-0038-z. ISSN 2199-1197.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  68. ^ Akbaribazm, Mohsen; Goodarzi, Nader; Rahimi, Mohsen (October 2021). "Female infertility and herbal medicine: An overview of the new findings". Food Science & Nutrition. 9 (10): 5869–5882. doi:10.1002/fsn3.2523. ISSN 2048-7177. PMC 8498057. PMID 34646552.{{cite journal}}: CS1 maint: PMC format (link)
  69. ^ Desmawati, Desmawati; Sulastri, Delmi (2019-02-14). "Phytoestrogens and Their Health Effect". Open Access Macedonian Journal of Medical Sciences. 7 (3): 495–499. doi:10.3889/oamjms.2019.086. ISSN 1857-9655. PMC 6390141. PMID 30834024.