The protein Cyanovirin-N (CV-N) and its bacterial origination N. ellipsosporum were screened for and discovered as being antiviral in the lab of Michael R. Boyd MD, PhD, University of South Alabama, 1997[1]. It originally gained notable interest in its ostensible use as an antiviral topical agent to be applied before intercourse. It is antiviral against HIV-1, HIV-2, SIV, HCV, HSV-1, Influenza A and B, Ebola, and MARV[2].

Bacterial origin

edit

Cyanobacteria, primary colonizers found mostly in ocean water, have evolved with many protective traits including antiviral activity[3]. CV-N is a lectin protein produced by Nostoc ellipsosporum, a fresh water, gram negative, unbranched filamentous cyanobacteria.

Structure

edit

The CV-N protein is made from 101 amino acids forming a monomer with two nearly identical domains hinged near the 50th amino acid. Torsion angle can separate the two domains, domains A and B. It is most often found in crystalized form to have been separated then reassociated with neighboring domains from the other separated monomers, repeatedly forming AB’ or BA’ pseudo-monomers also called domain-swapped dimers[4]. CV-N is a mostly beta-sheet protein and its mass is 11 kilodaltons.

Its amino acid sequence is: LGKFSQTCYNSAIQGSVLTSTCERTNGGYNTSSIDLNSVIENVDGSLKWQPSNFIETCRNTQLAGSSELAAECKTRAQQFVSTKINLDDHIANIDGTLKYE

 
Botos, Istvan; O’Keefe, Barry R.; Shenoy, Shilpa R.; Cartner, Laura K.; Ratner, Daniel M.; Seeberger, Peter H.; Boyd, Michael R.; Wlodawer, Alexander (2002-09). "Structures of the Complexes of a Potent Anti-HIV Protein Cyanovirin-N and High Mannose Oligosaccharides". Journal of Biological Chemistry. 277 (37): 34336–34342. doi:10.1074/jbc.m205909200. ISSN 0021-9258.

Mechanism against viruses

edit

The CV-N lectin protein interacts with carbohydrates found on the surfaces of viruses. This halts their activity and ability to bind to target cell membranes.

The HIV envelope glycoprotein, gp120 contains high-mannose sugars[5]. gp120 interacts with CD4 of the human T-cell and with gp140 fuses the viral and human menmbrane[6]. Similarly, the SARS-CoV-2 envelope produces a spike protein with an S glycoprotein containing high-mannose sugars carrying out membrane fusion[7].  

CV-N recognizes the N-linked high mannose sugars and interacts with Man-8 and Man-9 sugars[8]. It is not known if both Man-8 and Man-9 are required or redundant.

edit

“While CVN was originally thought to be an orphan lectin with little homology to any other known protein family, a family of CVN homologs, termed CVNHs, has been described“[9].

References

edit
  1. ^ Boyd, M. R.; Gustafson, K. R.; McMahon, J. B.; Shoemaker, R. H.; O'Keefe, B. R.; Mori, T.; Gulakowski, R. J.; Wu, L.; Rivera, M. I.; Laurencot, C. M.; Currens, M. J.; Cardellina, J. H.; Buckheit, R. W.; Nara, P. L.; Pannell, L. K. (1997-07). "Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development". Antimicrobial Agents and Chemotherapy. 41 (7): 1521–1530. doi:10.1128/AAC.41.7.1521. ISSN 0066-4804. PMID 9210678. {{cite journal}}: Check date values in: |date= (help)
  2. ^ Mitchell, Carter A.; Ramessar, Koreen; O'Keefe, Barry R. (2017-06). "Antiviral lectins: Selective inhibitors of viral entry". Antiviral Research. 142: 37–54. doi:10.1016/j.antiviral.2017.03.007. ISSN 0166-3542. {{cite journal}}: Check date values in: |date= (help)
  3. ^ "Shibboleth Authentication Request". login.csumb.idm.oclc.org. doi:10.1002/cdt3.11. PMC 9086949. PMID 35572950. Retrieved 2023-04-26.{{cite web}}: CS1 maint: PMC format (link)
  4. ^ Botos, Istvan; O’Keefe, Barry R.; Shenoy, Shilpa R.; Cartner, Laura K.; Ratner, Daniel M.; Seeberger, Peter H.; Boyd, Michael R.; Wlodawer, Alexander (2002-09). "Structures of the Complexes of a Potent Anti-HIV Protein Cyanovirin-N and High Mannose Oligosaccharides". Journal of Biological Chemistry. 277 (37): 34336–34342. doi:10.1074/jbc.m205909200. ISSN 0021-9258. {{cite journal}}: Check date values in: |date= (help)CS1 maint: unflagged free DOI (link)
  5. ^ Matei, Elena; Basu, Rohan; Furey, William; Shi, Jiong; Calnan, Conor; Aiken, Christopher; Gronenborn, Angela M. (2016-09). "Structure and Glycan Binding of a New Cyanovirin-N Homolog". Journal of Biological Chemistry. 291 (36): 18967–18976. doi:10.1074/jbc.m116.740415. ISSN 0021-9258. {{cite journal}}: Check date values in: |date= (help)CS1 maint: unflagged free DOI (link)
  6. ^ "Envelope glycoprotein GP120", Wikipedia, 2023-03-02, retrieved 2023-04-26
  7. ^ Duan, Liangwei; Zheng, Qianqian; Zhang, Hongxia; Niu, Yuna; Lou, Yunwei; Wang, Hui (2020-10-07). "The SARS-CoV-2 Spike Glycoprotein Biosynthesis, Structure, Function, and Antigenicity: Implications for the Design of Spike-Based Vaccine Immunogens". Frontiers in Immunology. 11. doi:10.3389/fimmu.2020.576622. ISSN 1664-3224.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  8. ^ Barrientos, Laura G.; Matei, Elena; Lasala, Fátima; Delgado, Rafael; Gronenborn, Angela M. (2006-09-29). "Dissecting carbohydrate–Cyanovirin-N binding by structure-guided mutagenesis: functional implications for viral entry inhibition". Protein Engineering, Design and Selection. 19 (12): 525–535. doi:10.1093/protein/gzl040. ISSN 1741-0134.
  9. ^ "Cyanovirin-N (CVN) - CFGparadigms". www.functionalglycomics.org. Retrieved 2023-04-26.