Nuclear gene H3K27me3

Cajal body This article is a stub article due to a few different factors. The history of the Cajal bodies reveals that since their initial discovery, there have been numerous re-discoveries of this concept, leading to a wide array of content on the same topic. This could potentially be one of the underlying factors as to why the article isn't ranked higher on the quality scale; the re-discoveries occurred in numerous countries. This creates language barriers and makes collaboration of researched materials more difficult to share and interpret as they would have to be translated initially, before unification of ideas could take place. To improve on this, consolidation of all the work from the various different parties responsible for the "re-discovery" of the basal bodies would be the most pivotal step. This would pool together all the collective knowledge on the subject, resulting in a more comprehensive overview of the topic.

Good job. Keep it up! AdamCF87 (talk) 17:40, 5 October 2017 (UTC)

H3K27me3 Draft

edit

H3K27me3 is a histone methylation occurring on the amino (N) terminal tail of the core histone H3. This tri-methylation is associated with the downregulation of nearby genes via the formation of heterochromatic regions.[1]

Lysine Methylation

edit

 

This diagram shows the progressive methylation of a lysine residue. the tri-methylation denotes the methylation present in H3K27me3.

Understanding Histone Modifications

edit

The genomic DNA of eukaryotic cells is wrapped around special protein molecules known as Histones. The complexes formed by the looping of the DNA are known as Chromatin. The basic structural unit of chromatin is the Nucleosome: this consists of the core octamer of histones (H2A, H2B, H3 and H4) as well as a linker histone and about 180 base pairs of DNA. These core histones are rich in lysine and arginine residues. The carboxyl (C) terminal end of these histones contribute to histone-histone interactions, as well as histone-DNA interactions. The amino (N) terminal charged tails are the site of the post-translational modifications, such as the one seen in H3K27me3.[2][3]

Mechanisms and Function of Modification

edit

The placement of a repressive mark on lysine 27 requires the recruitment of chromatin regulators by transcription factors. These modifiers are either histone modification complexes which covalently modify the histones to move around the nucleosomes and open the chromatin, or chromatin remodelling complexes which involve movement of the nucleosomes without directly modifying them.[4] These histone marks can serve as docking sites of other co-activators as seen with H3K27me3. This occurs through polycomb mediated gene silencing via histone methylation and chromodomain interactions. A polycomb repressive complex (PRC); PCR2, mediates the tri-methylation of histone 3 on lysine 27 through histone methyl transferase activity.[5] This mark can recruit PRC1 which will bind and contribute to the compaction of the chromatin.[6]

Relationship with other Histones

edit

H3K27 can undergo a variety of other modifications. It can exist in mono- as well as di-methylated states. The roles of these respective modifications are not as well characterised as tri-methylation. PCR2 is however believed to be implicated in all the different methylations associated with H3K27me. H3K27me1 is linked to promotion of transcription and is seen to accumulate in transcribed genes. Histone-histone interactions play a role in this process. Regulation occurs via Setd2-dependent H3K36me3 deposition.[7] H3K27me2 is broadly distributed within the core histone H3 and is believed to play a protective role by inhibiting non-cell-type specific enhancers. Ultimately, this leads to the inactivation of transcription.[8] Acetylation is usually linked to the upregulation of genes. This is the case in H3K27ac which is an active enhancer mark. It is found in distal and proximal regions of genes. It is enriched in Transcriptional start sites (TSS). H3K27ac shares a location with H3K27me3 and they interact in an antagonistic manner. H3K27me3 is often seen to interact with H3K4me3 in bivalent domains .[9] These domains are usually found in embryonic stem cells and are pivotal for proper cell differentiation. H3K27me3 and H3K4me3 determine whether a cell will remain unspecified or will eventually differentiate.[10][11] The Grb10 gene in mice makes use of these bivalent domains. Grb10 displays imprinted gene expression. Genes are expressed from one parental allele while simultaneously being silenced in the other parental allele.[12] Other well characterised modifications are H3K9me3 as well as H4K20me3 which—just like H3K27me3—are linked to transcriptional repression via formation of heterochromatic regions. Interestingly, mono-methylations of H3K27, H3K9, and H4K20 are all associated with gene activation.[13]

Epigenetic Implications

edit

The post-translational modification of histone tails by either histone modifying complexes or chromatin remodelling complexes are interpreted by the cell and lead to complex, combinatorial transcriptional output. It is thought that a Histone code dictates the expression of genes by a complex interaction between the histones in a particular region.[14] The current understanding and interpretation of histones comes from two large scale projects: ENCODE and the Epigenomic roadmap.[15] The purpose of the epigenomic study was to investigate epigenetic changes across the entire genome. This lead to chromatin states which define genomic regions by grouping the interactions of different proteins and/or histone modifications together. Chromatin states were investigated in Drosophila cells by looking at the binding location of proteins in the genome. Use of ChIP-sequencing revealed regions in the genome characterised by different banding.[16] Different developmental stages were profiled in Drosophila as well, an emphasis was placed on histone modification relevance.[17] A look in to the data obtained led to the definition of chromatin states based on histone modifications.[18] Certain modifications were mapped and enrichment was seen to localize in certain genomic regions. Five core histone modifications were found with each respective one being linked to various cell functions.

• H3K4me3-promoters

• H3K4me1-enhancers

• H3K36me3-gene bodies

• H3K27me3-polycomb repression

• H3K9me3-heterochromatin

The human genome was annotated with chromatin states. These annotated states can be used as new ways to annotate a genome independently of the underlying genome sequence. This independence from the DNA sequence enforces the epigenetic nature of histone modifications. Chromatin states are also useful in identifying regulatory elements that have no defined sequence, such as enhancers. This additional level of annotation allows for a deeper understanding of cell specific gene regulation.[19]

Clinical implications

edit

H3k27me3 is believed to be implicated in some diseases due to its regulation as a repressive mark.

Cohen-Gibson Syndrome

edit

Cohen-Gibson Syndrome is a disorder linked to overgrowth and is characterised by dysmorphic facial features and variable intellectual disability. In some cases, a de novo missense mutation in EED was associated with decreased levels of H3K27me3 in comparison to WildType. This decrease was linked to loss of PRC2 activity.[20]

Spectrum Disorders

edit

There is evidence that implicates the downregulation of expression of H3K27me3 in conjunction with differential expression of H3K4me3 AND DNA methylation may play a factor in Fetal Alcohol Spectrum Disorder (FASD) in C57BL/6J mice. This histone code is believed to affect the peroxisome associated pathway and induce the loss of the peroxisomes to ameliorate oxidative stress.[21]

Methods

edit

The histone mark H3K27me3 can be detected in a variety of ways:

1. Chromatin Immunoprecipitation Sequencing (ChIP-sequencing) measures the amount of DNA enrichment once bound to a targeted protein and immunoprecipitated. It results in good optimization and is used in vivo to reveal DNA-protein binding occurring in cells. ChIP-Seq can be used to identify and quantify various DNA fragments for different histone modifications along a genomic region.

2. Micrococcal Nuclease sequencing (MNase-seq) is used to investigate regions that are bound by well positioned nucleosomes. Use of the micrococcal nuclease enzyme is employed to identify nucleosome positioning. Well positioned nucleosomes are seen to have enrichment of sequences.

3. Assay for transposase accessible chromatin sequencing (ATAC-seq) is used to look in to regions that are nucleosome free (open chromatin). It uses hyperactive Tn5 transposon to highlight nucleosome localisation.

References

edit
  1. ^ Ferrari, KJ; Scelfo, A; Jammula, S; Cuomo, A; Barozzi, I; Stützer, A; Fischle, W; Bonaldi, T; Pasini, D (9 January 2014). "Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity". Molecular cell. 53 (1): 49–62. doi:10.1016/j.molcel.2013.10.030. PMID 24289921.
  2. ^ Ruthenburg, AJ; Li, H; Patel, DJ; Allis, CD (December 2007). "Multivalent engagement of chromatin modifications by linked binding modules". Nature reviews. Molecular cell biology. 8 (12): 983–94. doi:10.1038/nrm2298. PMID 18037899.
  3. ^ Kouzarides, T (23 February 2007). "Chromatin modifications and their function". Cell. 128 (4): 693–705. doi:10.1016/j.cell.2007.02.005. PMID 17320507.
  4. ^ Strahl, BD; Allis, CD (6 January 2000). "The language of covalent histone modifications". Nature. 403 (6765): 41–5. doi:10.1038/47412. PMID 10638745.
  5. ^ Ku, M; Koche, RP; Rheinbay, E; Mendenhall, EM; Endoh, M; Mikkelsen, TS; Presser, A; Nusbaum, C; Xie, X; Chi, AS; Adli, M; Kasif, S; Ptaszek, LM; Cowan, CA; Lander, ES; Koseki, H; Bernstein, BE (October 2008). "Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains". PLoS genetics. 4 (10): e1000242. doi:10.1371/journal.pgen.1000242. PMID 18974828.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  6. ^ Sanz, LA; Chamberlain, S; Sabourin, JC; Henckel, A; Magnuson, T; Hugnot, JP; Feil, R; Arnaud, P (8 October 2008). "A mono-allelic bivalent chromatin domain controls tissue-specific imprinting at Grb10". The EMBO journal. 27 (19): 2523–32. doi:10.1038/emboj.2008.142. PMID 18650936.
  7. ^ Edmunds, JW; Mahadevan, LC; Clayton, AL (23 January 2008). "Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation". The EMBO journal. 27 (2): 406–20. doi:10.1038/sj.emboj.7601967. PMID 18157086.
  8. ^ American Association for Cancer Research Human Epigenome Task, Force.; European Union, Network of Excellence, Scientific Advisory, Board. (7 August 2008). "Moving AHEAD with an international human epigenome project". Nature. 454 (7205): 711–5. doi:10.1038/454711a. PMID 18685699.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. ^ Meissner, A; Mikkelsen, TS; Gu, H; Wernig, M; Hanna, J; Sivachenko, A; Zhang, X; Bernstein, BE; Nusbaum, C; Jaffe, DB; Gnirke, A; Jaenisch, R; Lander, ES (7 August 2008). "Genome-scale DNA methylation maps of pluripotent and differentiated cells". Nature. 454 (7205): 766–70. doi:10.1038/nature07107. PMID 18600261.
  10. ^ Bernstein, BE; Mikkelsen, TS; Xie, X; Kamal, M; Huebert, DJ; Cuff, J; Fry, B; Meissner, A; Wernig, M; Plath, K; Jaenisch, R; Wagschal, A; Feil, R; Schreiber, SL; Lander, ES (21 April 2006). "A bivalent chromatin structure marks key developmental genes in embryonic stem cells". Cell. 125 (2): 315–26. doi:10.1016/j.cell.2006.02.041. PMID 16630819.
  11. ^ Huang, J; Fan, T; Yan, Q; Zhu, H; Fox, S; Issaq, HJ; Best, L; Gangi, L; Munroe, D; Muegge, K (2004). "Lsh, an epigenetic guardian of repetitive elements". Nucleic Acids Research. 32 (17): 5019–28. doi:10.1093/nar/gkh821. PMID 15448183.
  12. ^ Blagitko, N; Mergenthaler, S; Schulz, U; Wollmann, HA; Craigen, W; Eggermann, T; Ropers, HH; Kalscheuer, VM (1 July 2000). "Human GRB10 is imprinted and expressed from the paternal and maternal allele in a highly tissue- and isoform-specific fashion". Human molecular genetics. 9 (11): 1587–95. PMID 10861285.
  13. ^ Barski, A; Cuddapah, S; Cui, K; Roh, TY; Schones, DE; Wang, Z; Wei, G; Chepelev, I; Zhao, K (18 May 2007). "High-resolution profiling of histone methylations in the human genome". Cell. 129 (4): 823–37. doi:10.1016/j.cell.2007.05.009. PMID 17512414.
  14. ^ Jenuwein, T; Allis, CD (10 August 2001). "Translating the histone code". Science. 293 (5532): 1074–80. doi:10.1126/science.1063127. PMID 11498575.
  15. ^ Birney, Ewan; Stamatoyannopoulos, John A.; Dutta, Anindya; Guigó, Roderic; Gingeras, Thomas R.; Margulies, Elliott H.; Weng, Zhiping; Snyder, Michael; Dermitzakis, Emmanouil T.; Stamatoyannopoulos, John A.; Thurman, Robert E.; Kuehn, Michael S.; Taylor, Christopher M.; Neph, Shane; Koch, Christoph M.; Asthana, Saurabh; Malhotra, Ankit; Adzhubei, Ivan; Greenbaum, Jason A.; Andrews, Robert M.; Flicek, Paul; Boyle, Patrick J.; Cao, Hua; Carter, Nigel P.; Clelland, Gayle K.; Davis, Sean; Day, Nathan; Dhami, Pawandeep; Dillon, Shane C.; Dorschner, Michael O.; Fiegler, Heike; Giresi, Paul G.; Goldy, Jeff; Hawrylycz, Michael; Haydock, Andrew; Humbert, Richard; James, Keith D.; Johnson, Brett E.; Johnson, Ericka M.; Frum, Tristan T.; Rosenzweig, Elizabeth R.; Karnani, Neerja; Lee, Kirsten; Lefebvre, Gregory C.; Navas, Patrick A.; Neri, Fidencio; Parker, Stephen C. J.; Sabo, Peter J.; Sandstrom, Richard; Shafer, Anthony; Vetrie, David; Weaver, Molly; Wilcox, Sarah; Yu1, Man; Collins, Francis S.; Dekker, Job; Lieb, Jason D.; Tullius, Thomas D.; Crawford, Gregory E.; Sunyaev, Shamil; Noble, William S.; Dunham, Ian; Dutta, Anindya; Guigó, Roderic; Denoeud, France; Reymond, Alexandre; Kapranov, Philipp; Rozowsky, Joel; Zheng, Deyou; Castelo, Robert; Frankish, Adam; Harrow, Jennifer; Ghosh, Srinka; Sandelin, Albin; Hofacker, Ivo L.; Baertsch, Robert; Keefe, Damian; Flicek, Paul; Dike, Sujit; Cheng, Jill; Hirsch, Heather A.; Sekinger, Edward A.; Lagarde, Julien; Abril, Josep F.; Shahab, Atif; Flamm, Christoph; Fried, Claudia; Hackermüller, Jörg; Hertel, Jana; Lindemeyer, Manja; Missal, Kristin; Tanzer, Andrea; Washietl, Stefan; Korbel, Jan; Emanuelsson, Olof; Pedersen, Jakob S.; Holroyd, Nancy; Taylor, Ruth; Swarbreck, David; Matthews, Nicholas; Dickson, Mark C.; Thomas, Daryl J.; Weirauch, Matthew T.; Gilbert, James; Drenkow, Jorg; Bell, Ian; Zhao, XiaoDong; Srinivasan, K.G.; Sung, Wing-Kin; Ooi, Hong Sain; Chiu, Kuo Ping; Foissac, Sylvain; Alioto, Tyler; Brent, Michael; Pachter, Lior; Tress, Michael L.; Valencia, Alfonso; Choo, Siew Woh; Choo, Chiou Yu; Ucla, Catherine; Manzano, Caroline; Wyss, Carine; Cheung, Evelyn; Clark, Taane G.; Brown, James B.; Ganesh, Madhavan; Patel, Sandeep; Tammana, Hari; Chrast, Jacqueline; Henrichsen, Charlotte N.; Kai, Chikatoshi; Kawai, Jun; Nagalakshmi, Ugrappa; Wu, Jiaqian; Lian, Zheng; Lian, Jin; Newburger, Peter; Zhang, Xueqing; Bickel, Peter; Mattick, John S.; Carninci, Piero; Hayashizaki, Yoshihide; Weissman, Sherman; Dermitzakis, Emmanouil T.; Margulies, Elliott H.; Hubbard, Tim; Myers, Richard M.; Rogers, Jane; Stadler, Peter F.; Lowe, Todd M.; Wei, Chia-Lin; Ruan, Yijun; Snyder, Michael; Birney, Ewan; Struhl, Kevin; Gerstein, Mark; Antonarakis, Stylianos E.; Gingeras, Thomas R.; Brown, James B.; Flicek, Paul; Fu, Yutao; Keefe, Damian; Birney, Ewan; Denoeud, France; Gerstein, Mark; Green, Eric D.; Kapranov, Philipp; Karaöz, Ulaş; Myers, Richard M.; Noble, William S.; Reymond, Alexandre; Rozowsky, Joel; Struhl, Kevin; Siepel, Adam; Stamatoyannopoulos, John A.; Taylor, Christopher M.; Taylor, James; Thurman, Robert E.; Tullius, Thomas D.; Washietl, Stefan; Zheng, Deyou; Liefer, Laura A.; Wetterstrand, Kris A.; Good, Peter J.; Feingold, Elise A.; Guyer, Mark S.; Collins, Francis S.; Margulies, Elliott H.; Cooper, Gregory M.; Asimenos, George; Thomas, Daryl J.; Dewey, Colin N.; Siepel, Adam; Birney, Ewan; Keefe, Damian; Hou, Minmei; Taylor, James; Nikolaev, Sergey; Montoya-Burgos, Juan I.; Löytynoja, Ari; Whelan, Simon; Pardi, Fabio; Massingham, Tim; Brown, James B.; Huang, Haiyan; Zhang, Nancy R.; Bickel, Peter; Holmes, Ian; Mullikin, James C.; Ureta-Vidal, Abel; Paten, Benedict; Seringhaus, Michael; Church, Deanna; Rosenbloom, Kate; Kent, W. James; Stone, Eric A.; Sequencing Program*, NISC Comparative; Human Genome Sequencing Center*, Baylor College of Medicine; Genome Sequencing Center*, Washington University; Broad Institute*; Oakland Research Institute*, Children’s Hospital; Gerstein, Mark; Antonarakis, Stylianos E.; Batzoglou, Serafim; Goldman, Nick; Hardison, Ross C.; Haussler, David; Miller, Webb; Pachter, Lior; Green, Eric D.; Sidow, Arend; Weng, Zhiping; Trinklein, Nathan D.; Fu, Yutao; Zhang, Zhengdong D.; Karaöz, Ulaş; Barrera, Leah; Stuart, Rhona; Zheng, Deyou; Ghosh, Srinka; Flicek, Paul; King, David C.; Taylor, James; Ameur, Adam; Enroth, Stefan; Bieda, Mark C.; Koch, Christoph M.; Hirsch, Heather A.; Wei, Chia-Lin; Cheng, Jill; Kim, Jonghwan; Bhinge, Akshay A.; Giresi, Paul G.; Jiang, Nan; Liu, Jun; Yao, Fei; Sung, Wing-Kin; Chiu, Kuo Ping; Vega, Vinsensius B.; Lee, Charlie W.H.; Ng, Patrick; Shahab, Atif; Sekinger, Edward A.; Yang, Annie; Moqtaderi, Zarmik; Zhu, Zhou; Xu, Xiaoqin; Squazzo, Sharon; Oberley, Matthew J.; Inman, David; Singer, Michael A.; Richmond, Todd A.; Munn, Kyle J.; Rada-Iglesias, Alvaro; Wallerman, Ola; Komorowski, Jan; Clelland, Gayle K.; Wilcox, Sarah; Dillon, Shane C.; Andrews, Robert M.; Fowler, Joanna C.; Couttet, Phillippe; James, Keith D.; Lefebvre, Gregory C.; Bruce, Alexander W.; Dovey, Oliver M.; Ellis, Peter D.; Dhami, Pawandeep; Langford, Cordelia F.; Carter, Nigel P.; Vetrie, David; Kapranov, Philipp; Nix, David A.; Bell, Ian; Patel, Sandeep; Rozowsky, Joel; Euskirchen, Ghia; Hartman, Stephen; Lian, Jin; Wu, Jiaqian; Urban, Alexander E.; Kraus, Peter; Van Calcar, Sara; Heintzman, Nate; Hoon Kim, Tae; Wang, Kun; Qu, Chunxu; Hon, Gary; Luna, Rosa; Glass, Christopher K.; Rosenfeld, M. Geoff; Aldred, Shelley Force; Cooper, Sara J.; Halees, Anason; Lin, Jane M.; Shulha, Hennady P.; Zhang, Xiaoling; Xu, Mousheng; Haidar, Jaafar N. S.; Yu, Yong; Birney*, Ewan; Weissman, Sherman; Ruan, Yijun; Lieb, Jason D.; Iyer, Vishwanath R.; Green, Roland D.; Gingeras, Thomas R.; Wadelius, Claes; Dunham, Ian; Struhl, Kevin; Hardison, Ross C.; Gerstein, Mark; Farnham, Peggy J.; Myers, Richard M.; Ren, Bing; Snyder, Michael; Thomas, Daryl J.; Rosenbloom, Kate; Harte, Rachel A.; Hinrichs, Angie S.; Trumbower, Heather; Clawson, Hiram; Hillman-Jackson, Jennifer; Zweig, Ann S.; Smith, Kayla; Thakkapallayil, Archana; Barber, Galt; Kuhn, Robert M.; Karolchik, Donna; Haussler, David; Kent, W. James; Dermitzakis, Emmanouil T.; Armengol, Lluis; Bird, Christine P.; Clark, Taane G.; Cooper, Gregory M.; de Bakker, Paul I. W.; Kern, Andrew D.; Lopez-Bigas, Nuria; Martin, Joel D.; Stranger, Barbara E.; Thomas, Daryl J.; Woodroffe, Abigail; Batzoglou, Serafim; Davydov, Eugene; Dimas, Antigone; Eyras, Eduardo; Hallgrímsdóttir, Ingileif B.; Hardison, Ross C.; Huppert, Julian; Sidow, Arend; Taylor, James; Trumbower, Heather; Zody, Michael C.; Guigó, Roderic; Mullikin, James C.; Abecasis, Gonçalo R.; Estivill, Xavier; Birney, Ewan; Bouffard, Gerard G.; Guan, Xiaobin; Hansen, Nancy F.; Idol, Jacquelyn R.; Maduro, Valerie V.B.; Maskeri, Baishali; McDowell, Jennifer C.; Park, Morgan; Thomas, Pamela J.; Young, Alice C.; Blakesley, Robert W.; Muzny, Donna M.; Sodergren, Erica; Wheeler, David A.; Worley, Kim C.; Jiang, Huaiyang; Weinstock, George M.; Gibbs, Richard A.; Graves, Tina; Fulton, Robert; Mardis, Elaine R.; Wilson, Richard K.; Clamp, Michele; Cuff, James; Gnerre, Sante; Jaffe, David B.; Chang, Jean L.; Lindblad-Toh, Kerstin; Lander, Eric S.; Koriabine, Maxim; Nefedov, Mikhail; Osoegawa, Kazutoyo; Yoshinaga, Yuko; Zhu, Baoli; de Jong, Pieter J. (14 June 2007). "Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project". Nature. 447 (7146): 799–816. doi:10.1038/nature05874.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  16. ^ Filion, GJ; van Bemmel, JG; Braunschweig, U; Talhout, W; Kind, J; Ward, LD; Brugman, W; de Castro, IJ; Kerkhoven, RM; Bussemaker, HJ; van Steensel, B (15 October 2010). "Systematic protein location mapping reveals five principal chromatin types in Drosophila cells". Cell. 143 (2): 212–24. doi:10.1016/j.cell.2010.09.009. PMID 20888037.
  17. ^ modENCODE, Consortium.; Roy, S; Ernst, J; Kharchenko, PV; Kheradpour, P; Negre, N; Eaton, ML; Landolin, JM; Bristow, CA; Ma, L; Lin, MF; Washietl, S; Arshinoff, BI; Ay, F; Meyer, PE; Robine, N; Washington, NL; Di Stefano, L; Berezikov, E; Brown, CD; Candeias, R; Carlson, JW; Carr, A; Jungreis, I; Marbach, D; Sealfon, R; Tolstorukov, MY; Will, S; Alekseyenko, AA; Artieri, C; Booth, BW; Brooks, AN; Dai, Q; Davis, CA; Duff, MO; Feng, X; Gorchakov, AA; Gu, T; Henikoff, JG; Kapranov, P; Li, R; MacAlpine, HK; Malone, J; Minoda, A; Nordman, J; Okamura, K; Perry, M; Powell, SK; Riddle, NC; Sakai, A; Samsonova, A; Sandler, JE; Schwartz, YB; Sher, N; Spokony, R; Sturgill, D; van Baren, M; Wan, KH; Yang, L; Yu, C; Feingold, E; Good, P; Guyer, M; Lowdon, R; Ahmad, K; Andrews, J; Berger, B; Brenner, SE; Brent, MR; Cherbas, L; Elgin, SC; Gingeras, TR; Grossman, R; Hoskins, RA; Kaufman, TC; Kent, W; Kuroda, MI; Orr-Weaver, T; Perrimon, N; Pirrotta, V; Posakony, JW; Ren, B; Russell, S; Cherbas, P; Graveley, BR; Lewis, S; Micklem, G; Oliver, B; Park, PJ; Celniker, SE; Henikoff, S; Karpen, GH; Lai, EC; MacAlpine, DM; Stein, LD; White, KP; Kellis, M (24 December 2010). "Identification of functional elements and regulatory circuits by Drosophila modENCODE". Science. 330 (6012): 1787–97. doi:10.1126/science.1198374. PMID 21177974.
  18. ^ Kharchenko, Peter V.; Alekseyenko, Artyom A.; Schwartz, Yuri B.; Minoda, Aki; Riddle, Nicole C.; Ernst, Jason; Sabo, Peter J.; Larschan, Erica; Gorchakov, Andrey A.; Gu, Tingting; Linder-Basso, Daniela; Plachetka, Annette; Shanower, Gregory; Tolstorukov, Michael Y.; Luquette, Lovelace J.; Xi, Ruibin; Jung, Youngsook L.; Park, Richard W.; Bishop, Eric P.; Canfield, Theresa K.; Sandstrom, Richard; Thurman, Robert E.; MacAlpine, David M.; Stamatoyannopoulos, John A.; Kellis, Manolis; Elgin, Sarah C. R.; Kuroda, Mitzi I.; Pirrotta, Vincenzo; Karpen, Gary H.; Park, Peter J. (22 December 2010). "Comprehensive analysis of the chromatin landscape in Drosophila melanogaster". Nature. 471 (7339): 480–485. doi:10.1038/nature09725.
  19. ^ Roadmap Epigenomics, Consortium.; Kundaje, A; Meuleman, W; Ernst, J; Bilenky, M; Yen, A; Heravi-Moussavi, A; Kheradpour, P; Zhang, Z; Wang, J; Ziller, MJ; Amin, V; Whitaker, JW; Schultz, MD; Ward, LD; Sarkar, A; Quon, G; Sandstrom, RS; Eaton, ML; Wu, YC; Pfenning, AR; Wang, X; Claussnitzer, M; Liu, Y; Coarfa, C; Harris, RA; Shoresh, N; Epstein, CB; Gjoneska, E; Leung, D; Xie, W; Hawkins, RD; Lister, R; Hong, C; Gascard, P; Mungall, AJ; Moore, R; Chuah, E; Tam, A; Canfield, TK; Hansen, RS; Kaul, R; Sabo, PJ; Bansal, MS; Carles, A; Dixon, JR; Farh, KH; Feizi, S; Karlic, R; Kim, AR; Kulkarni, A; Li, D; Lowdon, R; Elliott, G; Mercer, TR; Neph, SJ; Onuchic, V; Polak, P; Rajagopal, N; Ray, P; Sallari, RC; Siebenthall, KT; Sinnott-Armstrong, NA; Stevens, M; Thurman, RE; Wu, J; Zhang, B; Zhou, X; Beaudet, AE; Boyer, LA; De Jager, PL; Farnham, PJ; Fisher, SJ; Haussler, D; Jones, SJ; Li, W; Marra, MA; McManus, MT; Sunyaev, S; Thomson, JA; Tlsty, TD; Tsai, LH; Wang, W; Waterland, RA; Zhang, MQ; Chadwick, LH; Bernstein, BE; Costello, JF; Ecker, JR; Hirst, M; Meissner, A; Milosavljevic, A; Ren, B; Stamatoyannopoulos, JA; Wang, T; Kellis, M (19 February 2015). "Integrative analysis of 111 reference human epigenomes". Nature. 518 (7539): 317–30. doi:10.1038/nature14248. PMID 25693563.
  20. ^ Imagawa, E; Higashimoto, K; Sakai, Y; Numakura, C; Okamoto, N; Matsunaga, S; Ryo, A; Sato, Y; Sanefuji, M; Ihara, K; Takada, Y; Nishimura, G; Saitsu, H; Mizuguchi, T; Miyatake, S; Nakashima, M; Miyake, N; Soejima, H; Matsumoto, N (June 2017). "Mutations in genes encoding polycomb repressive complex 2 subunits cause Weaver syndrome". Human mutation. 38 (6): 637–648. doi:10.1002/humu.23200. PMID 28229514.
  21. ^ Chater-Diehl, Eric J.; Laufer, Benjamin I.; Castellani, Christina A.; Alberry, Bonnie L.; Singh, Shiva M.; Kim, Jung-Woong (2 May 2016). "Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure". PLOS One. 11 (5): e0154836. doi:10.1371/journal.pone.0154836.{{cite journal}}: CS1 maint: unflagged free DOI (link)