The Beltrami identity is a mathematical relation used in the calculus of variations to find a function u(x) that minimizes a functional, and is[1]

where

C is a constant,
u′ = du/dx,
L = L[ u(x), u′(x) ].

It is derived from the Euler-Lagrange equation for the case of x not appearing explicitly in L. The Euler-Lagrange equation applies to functionals of the form[2]

where a, b are constants and u′(x) = du / dx. For the case of L / ∂x = 0, the Euler-Lagrange equation reduces to the Beltrami identity,[3]

where C is a constant.

  1. ^ Weisstein, Eric W. "Euler-Lagrange Differential Equation." From MathWorld--A Wolfram Web Resource. See Eq. (5).
  2. ^ Methods of Mathematical Physics. Vol. Vol. I (First English ed.). New York, New York: Interscience Publishers, Inc. 1953. p. 184. ISBN 978-0471504474. {{cite book}}: |access-date= requires |url= (help); |volume= has extra text (help); Unknown parameter |authors= ignored (help)
  3. ^ Weisstein, Eric W. "Euler-Lagrange Differential Equation." From MathWorld--A Wolfram Web Resource. See Eq. (5).





The Beltrami identity is a simplified and less general version of the Euler-Lagrange equation in the calculus of variations. The Euler-Lagrange equation applies to functionals of the form[1]

where a, b are constants and u′(x) = du / dx. For the case of L / ∂x = 0, the Euler-Lagrange equation reduces to the Beltrami identity,[2]

where C is a constant.

  1. ^ Methods of Mathematical Physics. Vol. Vol. I (First English ed.). New York, New York: Interscience Publishers, Inc. 1953. p. 184. ISBN 978-0471504474. {{cite book}}: |access-date= requires |url= (help); |volume= has extra text (help); Unknown parameter |authors= ignored (help)
  2. ^ Weisstein, Eric W. "Euler-Lagrange Differential Equation." From MathWorld--A Wolfram Web Resource. See Eq. (5).