# Transmittance

Transmittance of the surface of a material is its effectiveness in transmitting radiant energy. It is the fraction of incident electromagnetic power that is transmitted through a sample, in contrast to the transmission coefficient, which is the ratio of the transmitted to incident electric field.[2]

Internal transmittance refers to energy loss by absorption, whereas (total) transmittance is that due to absorption, scattering, reflection, etc.

## Mathematical definitions

### Hemispherical transmittance

Hemispherical transmittance of a surface, denoted T, is defined as[3]

${\displaystyle T={\frac {\Phi _{\mathrm {e} }^{\mathrm {t} }}{\Phi _{\mathrm {e} }^{\mathrm {i} }}},}$

where

• Φet is the radiant flux transmitted by that surface;

### Spectral hemispherical transmittance

Spectral hemispherical transmittance in frequency and spectral hemispherical transmittance in wavelength of a surface, denoted Tν and Tλ respectively, are defined as[3]

${\displaystyle T_{\nu }={\frac {\Phi _{\mathrm {e} ,\nu }^{\mathrm {t} }}{\Phi _{\mathrm {e} ,\nu }^{\mathrm {i} }}},}$
${\displaystyle T_{\lambda }={\frac {\Phi _{\mathrm {e} ,\lambda }^{\mathrm {t} }}{\Phi _{\mathrm {e} ,\lambda }^{\mathrm {i} }}},}$

where

### Directional transmittance

Directional transmittance of a surface, denoted TΩ, is defined as[3]

${\displaystyle T_{\Omega }={\frac {L_{\mathrm {e} ,\Omega }^{\mathrm {t} }}{L_{\mathrm {e} ,\Omega }^{\mathrm {i} }}},}$

where

• Le,Ωt is the radiance transmitted by that surface;

### Spectral directional transmittance

Spectral directional transmittance in frequency and spectral directional transmittance in wavelength of a surface, denoted Tν,Ω and Tλ,Ω respectively, are defined as[3]

${\displaystyle T_{\nu ,\Omega }={\frac {L_{\mathrm {e} ,\Omega ,\nu }^{\mathrm {t} }}{L_{\mathrm {e} ,\Omega ,\nu }^{\mathrm {i} }}},}$
${\displaystyle T_{\lambda ,\Omega }={\frac {L_{\mathrm {e} ,\Omega ,\lambda }^{\mathrm {t} }}{L_{\mathrm {e} ,\Omega ,\lambda }^{\mathrm {i} }}},}$

where

## Beer–Lambert law

By definition, internal transmittance is related to optical depth and to absorbance as

${\displaystyle T=e^{-\tau }=10^{-A},}$

where

• τ is the optical depth;
• A is the absorbance.

The Beer–Lambert law states that, for N attenuating species in the material sample,

${\displaystyle T=e^{-\sum _{i=1}^{N}\sigma _{i}\int _{0}^{\ell }n_{i}(z)\mathrm {d} z}=10^{-\sum _{i=1}^{N}\varepsilon _{i}\int _{0}^{\ell }c_{i}(z)\mathrm {d} z},}$

or equivalently that

${\displaystyle \tau =\sum _{i=1}^{N}\tau _{i}=\sum _{i=1}^{N}\sigma _{i}\int _{0}^{\ell }n_{i}(z)\,\mathrm {d} z,}$
${\displaystyle A=\sum _{i=1}^{N}A_{i}=\sum _{i=1}^{N}\varepsilon _{i}\int _{0}^{\ell }c_{i}(z)\,\mathrm {d} z,}$

where

Attenuation cross section and molar attenuation coefficient are related by

${\displaystyle \varepsilon _{i}={\frac {\mathrm {N_{A}} }{\ln {10}}}\,\sigma _{i},}$

and number density and amount concentration by

${\displaystyle c_{i}={\frac {n_{i}}{\mathrm {N_{A}} }},}$

where NA is the Avogadro constant.

In case of uniform attenuation, these relations become[4]

${\displaystyle T=e^{-\sum _{i=1}^{N}\sigma _{i}n_{i}\ell }=10^{-\sum _{i=1}^{N}\varepsilon _{i}c_{i}\ell },}$

or equivalently

${\displaystyle \tau =\sum _{i=1}^{N}\sigma _{i}n_{i}\ell ,}$
${\displaystyle A=\sum _{i=1}^{N}\varepsilon _{i}c_{i}\ell .}$

Cases of non-uniform attenuation occur in atmospheric science applications and radiation shielding theory for instance.

Quantity SI units Notes
Name Sym.
Hemispherical emissivity ε Radiant exitance of a surface, divided by that of a black body at the same temperature as that surface.
Spectral hemispherical emissivity εν
ελ
Spectral exitance of a surface, divided by that of a black body at the same temperature as that surface.
Directional emissivity εΩ Radiance emitted by a surface, divided by that emitted by a black body at the same temperature as that surface.
Spectral directional emissivity εΩ,ν
εΩ,λ
Spectral radiance emitted by a surface, divided by that of a black body at the same temperature as that surface.
Hemispherical absorptance A Radiant flux absorbed by a surface, divided by that received by that surface. This should not be confused with "absorbance".
Spectral hemispherical absorptance Aν
Aλ
Spectral flux absorbed by a surface, divided by that received by that surface. This should not be confused with "spectral absorbance".
Directional absorptance AΩ Radiance absorbed by a surface, divided by the radiance incident onto that surface. This should not be confused with "absorbance".
Spectral directional absorptance AΩ,ν
AΩ,λ
Spectral radiance absorbed by a surface, divided by the spectral radiance incident onto that surface. This should not be confused with "spectral absorbance".
Hemispherical reflectance R Radiant flux reflected by a surface, divided by that received by that surface.
Spectral hemispherical reflectance Rν
Rλ
Spectral flux reflected by a surface, divided by that received by that surface.
Directional reflectance RΩ Radiance reflected by a surface, divided by that received by that surface.
Spectral directional reflectance RΩ,ν
RΩ,λ
Spectral radiance reflected by a surface, divided by that received by that surface.
Hemispherical transmittance T Radiant flux transmitted by a surface, divided by that received by that surface.
Spectral hemispherical transmittance Tν
Tλ
Spectral flux transmitted by a surface, divided by that received by that surface.
Directional transmittance TΩ Radiance transmitted by a surface, divided by that received by that surface.
Spectral directional transmittance TΩ,ν
TΩ,λ
Spectral radiance transmitted by a surface, divided by that received by that surface.
Hemispherical attenuation coefficient μ m−1 Radiant flux absorbed and scattered by a volume per unit length, divided by that received by that volume.
Spectral hemispherical attenuation coefficient μν
μλ
m−1 Spectral radiant flux absorbed and scattered by a volume per unit length, divided by that received by that volume.
Directional attenuation coefficient μΩ m−1 Radiance absorbed and scattered by a volume per unit length, divided by that received by that volume.
Spectral directional attenuation coefficient μΩ,ν
μΩ,λ
m−1 Spectral radiance absorbed and scattered by a volume per unit length, divided by that received by that volume.

1. ^ "Electronic warfare and radar systems engineering handbook". Archived from the original on September 13, 2001.{{cite web}}: CS1 maint: unfit URL (link)