Open main menu
  Synthetic elements
  Rare radioactive natural elements; often produced artificially

In chemistry, a synthetic element is a chemical element that does not occur naturally on Earth,[1] and can only be created artificially. So far, 24 synthetic elements have been created.[2] These are the elements with atomic numbers 95–118.[3] All are unstable, decaying with half-lives ranging from 15.6 million years to a few hundred microseconds.

Seven other elements were first created artificially and thus considered synthetic, but later discovered to exist naturally (in trace quantities) as well; among them plutonium—first synthesized in 1940—which is extremely well-known, due to its use in atomic bombs and nuclear reactors.[4]



Synthetic elements are radioactive and decay rapidly into lighter elements—possessing half-lives so short, relative to the age of Earth (which formed approximately 4.6 billion years ago), that any atoms of these elements that may have existed when the Earth formed have long since decayed.[5][6] Atoms of synthetic elements only occur on Earth as the product of atomic bombs or experiments that involve nuclear reactors or particle accelerators, via nuclear fusion or neutron absorption.[7]

Atomic mass for natural elements is based on weighted average abundance of natural isotopes that occur in Earth's crust and atmosphere. For synthetic elements, the isotope depends on the means of synthesis, so the concept of natural isotope abundance has no meaning. Therefore, for synthetic elements the total nucleon count (protons plus neutrons) of the most stable isotope, i.e. the isotope with the longest half-life—is listed in brackets as the atomic mass.


The first element discovered through synthesis was technetium—its discovery being definitely confirmed in 1937.[8] This discovery filled a gap in the periodic table, and the fact that no stable isotopes of technetium exist explains its natural absence on Earth (and the gap).[9] With the longest-lived isotope of technetium, 97Tc, having a 4.21-million-year half-life,[10] no technetium remains from the formation of the Earth.[11][12] Only minute traces of technetium occur naturally in the Earth's crust—as a spontaneous fission product of uranium-238 or by neutron capture in molybdenum ores—but technetium is present naturally in red giant stars.[13][14][15][16] The first discovered purely synthetic element was curium, synthesized in 1944 by Glenn T. Seaborg, Ralph A. James, and Albert Ghiorso by bombarding plutonium with alpha particles.[17][18][19][20] The discoveries of americium, berkelium, and californium followed soon. Einsteinium and fermium were discovered by a team of scientists led by Albert Ghiorso in 1952 while studying the radioactive debris from the detonation of the first hydrogen bomb.[21] The isotopes discovered were einsteinium-253, with a half-life of 20.5 days, and fermium-255, with a half-life of about 20 hours.

The discoveries of mendelevium, nobelium, and lawrencium followed. During the height of the Cold War, teams from the Soviet Union and the United States independently discovered rutherfordium and dubnium. The naming and credit for discovery of those elements remained unresolved for many years but eventually shared credit was recognized by IUPAC/IUPAP in 1992. In 1997, IUPAC decided to give dubnium its current name honoring the city of Dubna where the Russian team made their discoveries since American-chosen names had already been used for many existing synthetic elements, while the name rutherfordium (chosen by the American team) was accepted for element 104. Meanwhile, the American team had discovered seaborgium, and the next six elements had been discovered by a German team: bohrium, hassium, meitnerium, darmstadtium, roentgenium, and copernicium. Element 113, nihonium, was discovered by a Japanese team; the last five known elements, flerovium, moscovium, livermorium, tennessine, and oganesson, were discovered by Russian–American collaborations and complete the seventh row of the periodic table.

No elements with an atomic number greater than 99 have any uses outside of scientific research, as they have extremely short half-lives and have not been produced in macroscopic quantities.

List of synthetic elementsEdit

The following elements do not occur naturally on Earth. All are transuranium elements and have atomic numbers of 95 and higher.

Element name Chemical
First definite
Americium Am 95 1944
Curium Cm 96 1944
Berkelium Bk 97 1949
Californium Cf 98 1950
Einsteinium Es 99 1952
Fermium Fm 100 1952
Mendelevium Md 101 1955
Nobelium No 102 1966
Lawrencium Lr 103 1971
Rutherfordium Rf 104 1966 (USSR), 1969 (US) *
Dubnium Db 105 1968 (USSR), 1970 (US) *
Seaborgium Sg 106 1974
Bohrium Bh 107 1981
Hassium Hs 108 1984
Meitnerium Mt 109 1982
Darmstadtium Ds 110 1994
Roentgenium Rg 111 1994
Copernicium Cn 112 1996
Nihonium Nh 113 2003–4
Flerovium Fl 114 1999
Moscovium Mc 115 2003
Livermorium Lv 116 2000
Tennessine Ts 117 2010
Oganesson Og 118 2002
* Shared credit for discovery.

Other elements usually produced through synthesisEdit

All elements with atomic numbers 1 through 94 occur naturally at least in trace quantities, but the following elements are often produced through synthesis. Technetium, promethium, astatine, neptunium, and plutonium were discovered through synthesis before being found in nature.

Element name Chemical
First definite
Technetium Tc 43 1937
Promethium Pm 61 1945
Polonium Po 84 1898
Astatine At 85 1940
Francium Fr 87 1939
Actinium Ac 89 1902
Protactinium Pa 91 1913
Neptunium Np 93 1940
Plutonium Pu 94 1940


  1. ^ Kulkarni, Mayuri. "A Complete List of Man-made Synthetic Elements". ScienceStuck. Retrieved 15 May 2019.
  2. ^ Kulkarni, Mayuri. "A Complete List of Man-made Synthetic Elements". ScienceStuck. Retrieved 15 May 2019.
  3. ^ Kulkarni, Mayuri. "A Complete List of Man-made Synthetic Elements". ScienceStuck. Retrieved 15 May 2019.
  4. ^ Bradford, Alina. "Facts About Plutonium". LiveSci=nce. Retrieved 16 May 2019.
  5. ^ Redd, Nola. "How Was Earth Formed?". Retrieved 16 May 2019.
  6. ^ "Synthetic elements". Infoplease. Retrieved 16 May 2019.
  7. ^ Kulkarni, Mayuri. "A Complete List of Man-made Synthetic Elements". ScienceStuck. Retrieved 16 May 2019.
  8. ^ Helmenstine, Anne Marie. "Technetium or Masurium Facts". ThoughtCo. ThoughtCo. Retrieved 15 May 2019.
  9. ^ "Technetium decay and its cardiac application". KhanAcademy. Khan Academy. Retrieved 15 May 2019.
  10. ^ Audi, Georges; Kondev, Filip G.; Wang, Meng; Huang, Wen Jia; Naimi, Sarah (2017), "The NUBASE2016 evaluation of nuclear properties" (PDF), Chinese Physics C, 41 (3): 030001–1—030001–138, Bibcode:2017ChPhC..41c0001A, doi:10.1088/1674-1137/41/3/030001
  11. ^ Stewart, Doug. "Technetium Element Facts". Chemicool. Retrieved 15 May 2019.
  12. ^ Yinon, Yinon. "Periodic Table: Technetium". Chemical Elements. Retrieved 15 May 2019.
  13. ^ Hammond, C. R. (2004). "The Elements". Handbook of Chemistry and Physics (81st ed.). CRC press. ISBN 978-0-8493-0485-9.
  14. ^ Moore, C. E. (1951). "Technetium in the Sun". Science. 114 (2951): 59–61. Bibcode:1951Sci...114...59M. doi:10.1126/science.114.2951.59. PMID 17782983.
  15. ^ Dixon, P.; Curtis, David B.; Musgrave, John; Roensch, Fred; Roach, Jeff; Rokop, Don (1997). "Analysis of Naturally Produced Technetium and Plutonium in Geologic Materials". Analytical Chemistry. 69 (9): 1692–9. doi:10.1021/ac961159q. PMID 21639292.
  16. ^ Curtis, D.; Fabryka-Martin, June; Dixon, Paul; Cramer, Jan (1999). "Nature's uncommon elements: plutonium and technetium". Geochimica et Cosmochimica Acta. 63 (2): 275. Bibcode:1999GeCoA..63..275C. doi:10.1016/S0016-7037(98)00282-8.
  17. ^ Krebs, Robert E. The history and use of our earth's chemical elements: a reference guide, Greenwood Publishing Group, 2006, ISBN 0-313-33438-2 p. 322
  18. ^ Harper, Douglas. "pandemonium". Online Etymology Dictionary.
  19. ^ Harper, Douglas. "delirium". Online Etymology Dictionary.
  20. ^ Hall, Nina (2000). The New Chemistry: A Showcase for Modern Chemistry and Its Applications. Cambridge University Press. pp. 8–9. ISBN 978-0-521-45224-3.
  21. ^ Ghiorso, Albert (2003). "Einsteinium and Fermium". Chemical and Engineering News. 81 (36): 174–175. doi:10.1021/cen-v081n036.p174.

External linksEdit