The soler model is a quantum field theory model of Dirac fermions interacting via four fermion interactions in 3 spatial and 1 time dimension. It was introduced in 1938 by Dmitri Ivanenko [1] and re-introduced and investigated in 1970 by Mario Soler[2] as a toy model of self-interacting electron.

This model is described by the Lagrangian density

where is the coupling constant, in the Feynman slash notations, . Here , , are Dirac gamma matrices.

The corresponding equation can be written as

,

where , , and are the Dirac matrices. In one dimension, this model is known as the massive Gross–Neveu model.[3][4]

Generalizations

edit

A commonly considered generalization is

 

with  , or even

 ,

where   is a smooth function.

Features

edit

Internal symmetry

edit

Besides the unitary symmetry U(1), in dimensions 1, 2, and 3 the equation has SU(1,1) global internal symmetry.[5]

Renormalizability

edit

The Soler model is renormalizable by the power counting for   and in one dimension only, and non-renormalizable for higher values of   and in higher dimensions.

Solitary wave solutions

edit

The Soler model admits solitary wave solutions of the form   where   is localized (becomes small when   is large) and   is a real number.[6]

Reduction to the massive Thirring model

edit

In spatial dimension 2, the Soler model coincides with the massive Thirring model, due to the relation  , with   the relativistic scalar and   the charge-current density. The relation follows from the identity  , for any  .[7]

See also

edit

References

edit
  1. ^ Dmitri Ivanenko (1938). "Notes to the theory of interaction via particles" (PDF). Zh. Eksp. Teor. Fiz. 8: 260–266.
  2. ^ Mario Soler (1970). "Classical, Stable, Nonlinear Spinor Field with Positive Rest Energy". Phys. Rev. D. 1 (10): 2766–2769. Bibcode:1970PhRvD...1.2766S. doi:10.1103/PhysRevD.1.2766.
  3. ^ Gross, David J. and Neveu, André (1974). "Dynamical symmetry breaking in asymptotically free field theories". Phys. Rev. D. 10 (10): 3235–3253. Bibcode:1974PhRvD..10.3235G. doi:10.1103/PhysRevD.10.3235.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. ^ S.Y. Lee & A. Gavrielides (1975). "Quantization of the localized solutions in two-dimensional field theories of massive fermions". Phys. Rev. D. 12 (12): 3880–3886. Bibcode:1975PhRvD..12.3880L. doi:10.1103/PhysRevD.12.3880.
  5. ^ Galindo, A. (1977). "A remarkable invariance of classical Dirac Lagrangians". Lettere al Nuovo Cimento. 20 (6): 210–212. doi:10.1007/BF02785129. S2CID 121750127.
  6. ^ Thierry Cazenave & Luis Vàzquez (1986). "Existence of localized solutions for a classical nonlinear Dirac field". Comm. Math. Phys. 105 (1): 35–47. Bibcode:1986CMaPh.105...35C. doi:10.1007/BF01212340. S2CID 121018463.
  7. ^ J. Cuevas-Maraver; P.G. Kevrekidis; A. Saxena; A. Comech & R. Lan (2016). "Stability of solitary waves and vortices in a 2D nonlinear Dirac model". Phys. Rev. Lett. 116 (21): 214101. arXiv:1512.03973. Bibcode:2016PhRvL.116u4101C. doi:10.1103/PhysRevLett.116.214101. PMID 27284659. S2CID 15719805.