This article is about the integral inequality. For the algebraic inequality in 3 variables, see
Schur's inequality .
In mathematical analysis , the Schur test , named after German mathematician Issai Schur , is a bound on the
L
2
→
L
2
{\displaystyle L^{2}\to L^{2}}
operator norm of an integral operator in terms of its Schwartz kernel (see Schwartz kernel theorem ).
Here is one version.[ 1] Let
X
,
Y
{\displaystyle X,\,Y}
be two measurable spaces (such as
R
n
{\displaystyle \mathbb {R} ^{n}}
). Let
T
{\displaystyle \,T}
be an integral operator with the non-negative Schwartz kernel
K
(
x
,
y
)
{\displaystyle \,K(x,y)}
,
x
∈
X
{\displaystyle x\in X}
,
y
∈
Y
{\displaystyle y\in Y}
:
T
f
(
x
)
=
∫
Y
K
(
x
,
y
)
f
(
y
)
d
y
.
{\displaystyle Tf(x)=\int _{Y}K(x,y)f(y)\,dy.}
If there exist real functions
p
(
x
)
>
0
{\displaystyle \,p(x)>0}
and
q
(
y
)
>
0
{\displaystyle \,q(y)>0}
and numbers
α
,
β
>
0
{\displaystyle \,\alpha ,\beta >0}
such that
(
1
)
∫
Y
K
(
x
,
y
)
q
(
y
)
d
y
≤
α
p
(
x
)
{\displaystyle (1)\qquad \int _{Y}K(x,y)q(y)\,dy\leq \alpha p(x)}
for almost all
x
{\displaystyle \,x}
and
(
2
)
∫
X
p
(
x
)
K
(
x
,
y
)
d
x
≤
β
q
(
y
)
{\displaystyle (2)\qquad \int _{X}p(x)K(x,y)\,dx\leq \beta q(y)}
for almost all
y
{\displaystyle \,y}
, then
T
{\displaystyle \,T}
extends to a continuous operator
T
:
L
2
→
L
2
{\displaystyle T:L^{2}\to L^{2}}
with the operator norm
‖
T
‖
L
2
→
L
2
≤
α
β
.
{\displaystyle \Vert T\Vert _{L^{2}\to L^{2}}\leq {\sqrt {\alpha \beta }}.}
Such functions
p
(
x
)
{\displaystyle \,p(x)}
,
q
(
y
)
{\displaystyle \,q(y)}
are called the Schur test functions.
In the original version,
T
{\displaystyle \,T}
is a matrix and
α
=
β
=
1
{\displaystyle \,\alpha =\beta =1}
.[ 2]
Common usage and Young's inequality
edit
A common usage of the Schur test is to take
p
(
x
)
=
q
(
y
)
=
1.
{\displaystyle \,p(x)=q(y)=1.}
Then we get:
‖
T
‖
L
2
→
L
2
2
≤
sup
x
∈
X
∫
Y
|
K
(
x
,
y
)
|
d
y
⋅
sup
y
∈
Y
∫
X
|
K
(
x
,
y
)
|
d
x
.
{\displaystyle \Vert T\Vert _{L^{2}\to L^{2}}^{2}\leq \sup _{x\in X}\int _{Y}|K(x,y)|\,dy\cdot \sup _{y\in Y}\int _{X}|K(x,y)|\,dx.}
This inequality is valid no matter whether the Schwartz kernel
K
(
x
,
y
)
{\displaystyle \,K(x,y)}
is non-negative or not.
A similar statement about
L
p
→
L
q
{\displaystyle L^{p}\to L^{q}}
operator norms is known as Young's inequality for integral operators :[ 3]
if
sup
x
(
∫
Y
|
K
(
x
,
y
)
|
r
d
y
)
1
/
r
+
sup
y
(
∫
X
|
K
(
x
,
y
)
|
r
d
x
)
1
/
r
≤
C
,
{\displaystyle \sup _{x}{\Big (}\int _{Y}|K(x,y)|^{r}\,dy{\Big )}^{1/r}+\sup _{y}{\Big (}\int _{X}|K(x,y)|^{r}\,dx{\Big )}^{1/r}\leq C,}
where
r
{\displaystyle r}
satisfies
1
r
=
1
−
(
1
p
−
1
q
)
{\displaystyle {\frac {1}{r}}=1-{\Big (}{\frac {1}{p}}-{\frac {1}{q}}{\Big )}}
, for some
1
≤
p
≤
q
≤
∞
{\displaystyle 1\leq p\leq q\leq \infty }
, then the operator
T
f
(
x
)
=
∫
Y
K
(
x
,
y
)
f
(
y
)
d
y
{\displaystyle Tf(x)=\int _{Y}K(x,y)f(y)\,dy}
extends to a continuous operator
T
:
L
p
(
Y
)
→
L
q
(
X
)
{\displaystyle T:L^{p}(Y)\to L^{q}(X)}
, with
‖
T
‖
L
p
→
L
q
≤
C
.
{\displaystyle \Vert T\Vert _{L^{p}\to L^{q}}\leq C.}
Using the Cauchy–Schwarz inequality and inequality (1), we get:
|
T
f
(
x
)
|
2
=
|
∫
Y
K
(
x
,
y
)
f
(
y
)
d
y
|
2
≤
(
∫
Y
K
(
x
,
y
)
q
(
y
)
d
y
)
(
∫
Y
K
(
x
,
y
)
f
(
y
)
2
q
(
y
)
d
y
)
≤
α
p
(
x
)
∫
Y
K
(
x
,
y
)
f
(
y
)
2
q
(
y
)
d
y
.
{\displaystyle {\begin{aligned}|Tf(x)|^{2}=\left|\int _{Y}K(x,y)f(y)\,dy\right|^{2}&\leq \left(\int _{Y}K(x,y)q(y)\,dy\right)\left(\int _{Y}{\frac {K(x,y)f(y)^{2}}{q(y)}}dy\right)\\&\leq \alpha p(x)\int _{Y}{\frac {K(x,y)f(y)^{2}}{q(y)}}\,dy.\end{aligned}}}
Integrating the above relation in
x
{\displaystyle x}
, using Fubini's Theorem , and applying inequality (2), we get:
‖
T
f
‖
L
2
2
≤
α
∫
Y
(
∫
X
p
(
x
)
K
(
x
,
y
)
d
x
)
f
(
y
)
2
q
(
y
)
d
y
≤
α
β
∫
Y
f
(
y
)
2
d
y
=
α
β
‖
f
‖
L
2
2
.
{\displaystyle \Vert Tf\Vert _{L^{2}}^{2}\leq \alpha \int _{Y}\left(\int _{X}p(x)K(x,y)\,dx\right){\frac {f(y)^{2}}{q(y)}}\,dy\leq \alpha \beta \int _{Y}f(y)^{2}dy=\alpha \beta \Vert f\Vert _{L^{2}}^{2}.}
It follows that
‖
T
f
‖
L
2
≤
α
β
‖
f
‖
L
2
{\displaystyle \Vert Tf\Vert _{L^{2}}\leq {\sqrt {\alpha \beta }}\Vert f\Vert _{L^{2}}}
for any
f
∈
L
2
(
Y
)
{\displaystyle f\in L^{2}(Y)}
.
^ Paul Richard Halmos and Viakalathur Shankar Sunder, Bounded integral operators on
L
2
{\displaystyle L^{2}}
spaces , Ergebnisse der Mathematik und ihrer Grenzgebiete (Results in Mathematics and Related Areas), vol. 96., Springer-Verlag, Berlin, 1978. Theorem 5.2.
^ I. Schur , Bemerkungen zur Theorie der Beschränkten Bilinearformen mit unendlich vielen Veränderlichen , J. reine angew. Math. 140 (1911), 1–28.
^ Theorem 0.3.1 in: C. D. Sogge , Fourier integral operators in classical analysis , Cambridge University Press, 1993. ISBN 0-521-43464-5