Right group

In mathematics, a right group[1][2] is an algebraic structure consisting of a set together with a binary operation that combines two elements into a third element while obeying the right group axioms. The right group axioms are similar to the group axioms, but allow for one-sided identity elements and one-sided inverse elements, as opposed to groups where both identities and inverses are two-sided. More precisely, if is a group, e is the identity of , a is an arbitrary element of and is the inverse of a, the following are always true for any group:

The rules above don't apply to right groups. For a right group, it is possible to have multiple left identities, and for each left identity any element will have a respective right inverse.

It can be proven (theorem 1.27 in [2]) that a right group is isomorphic to the direct product of a right zero semigroup and a group, while a right abelian group[1] is the direct product of a right zero semigroup and an abelian group. Left group[1][2] and left abelian group[1] are defined in analogous way, by substituting right for left in the definitions. The rest of this article will be mostly concerned about right groups, but everything applies to left groups by doing the appropriate right/left substitutions.

DefinitionEdit

A right group, originally called multiple group,[3][4] is a set   with a binary operation ⋅, satisfying the following axioms:[4]

Closure
For all   and   in  , there is an element c in   such that  .
Associativity
For all   in  ,  .
Left identity element
There is at least one left identity in  . That is, there exists an element   such that   for all   in  . Such an element does not need to be unique.
Right inverse elements
For every   in   and every identity element  , also in  , there is at least one element   in  , such that  . Such element   is said to be the right inverse of   with respect to  .

ExamplesEdit

Direct product of finite setsEdit

The following example is provided by.[4] Take the group  , the right zero semigroup   and construct a right group   as the direct product of   and  .

  is simply the cyclic group of order 3, with   as its identity, and   and   as the inverses of each other.

  table
e a b
e e a b
a a b e
b b e a

  is the right zero semigroup of order 2. Notice the each element repeats along its column, since by definition  , for any   and   in  .

  table
1 2
1 1 2
2 1 2

The direct product   of these two structures is defined as follows:

  • The elements of   are ordered pairs   such that   is in   and   is in  .
  • The   operation is defined element-wise:
    • Formula 1:  

The elements of   will look like   and so on. For brevity, let's rename these as  , and so on. The Cayley table of   is as follows:

  table
e1 a1 b1 e2 a2 b2
e1 e1 a1 b1 e2 a2 b2
a1 a1 b1 e1 a2 b2 e2
b1 b1 e1 a1 b2 e2 a2
e2 e1 a1 b1 e2 a2 b2
a2 a1 b1 e1 a2 b2 e2
b2 b1 e1 a1 b2 e2 a2

Here are some facts about  :

  •   has two left identities:   and  .
  • Each element has two right inverses. For example, the right inverses of   with regards to   and   are   and  , respectively.

Complex numbers in polar coordinatesEdit

Clifford gives a second example[4] involving complex numbers. Given two non-zero complex numbers a and b, the following operation forms a right group:

  •  

All complex numbers with modulus equal to 1 are left identities, and all complex numbers will have a right inverse with respect to any left identity.

The inner structure of this right group becomes clear when we use polar coordinates: let   and  , where A and B are the magnitudes and   and   are the arguments (angles) of a and b, respectively.   (this is not the regular multiplication of complex numbers) then becomes  . If we represent the magnitudes and arguments as ordered pairs, we can write this as:

  • Formula 2:  .

This right group is the direct product of a group (positive real numbers under multiplication) and a right zero semigroup induced by the real numbers. Structurally, this is identical to formula 1 above. In fact, this is how all right group operations look like when written as ordered pairs of the direct product of their factors.

Complex numbers in cartesian coordinatesEdit

If we take the and complex numbers and define an operation similar to example 2 but use cartesian instead of polar coordinates and addition instead of multiplication, we get another right group, with operation defined as follows:

  •  , or equivalently:
  • Formula 3:  

A practical example from computer scienceEdit

Consider the following example from computer science, where a set would be implemented as a programming language type.

  • Let   be the set of date times in an arbitrary programming language.
  • Let   be the set of transformations equivalent to adding a duration to an element of  .
  • Let   be the set of time zone transformations on elements of  .

Both   and   are subsets of  , the full transformation semigroup on  .   behaves like a group, where there is a zero duration and every duration has an inverse duration. If we treat these transformations as right semigroup actions,   behaves like a right zero semigroup, such that a time zone transformation always cancels any previous time zone transformation on a given date time.

Given any two arbitrary date times   and   (ignore issues regarding representation boundaries), one can find a pair of a duration and a time zone that will transform   into  . This composite transformation of time zone conversion and duration adding is isomorphic to the right group  .

Taking the java.time package as an example,[5] the sets   and   would correspond to the class ZonedDateTime, the function plus and the function withZoneSameInstant, respectively. More concretely, for any ZonedDateTime t1 and t2, there is a Duration d and a ZoneId z, such that t1.plus(d).withZoneSomeInstant(z) is equal to t2.

ReferencesEdit

  1. ^ a b c d Nagy, Attila (2001). Special classes of semigroups. Dordrecht: Kluwer Academic Publishers. ISBN 0-7923-6890-8. OCLC 46240335.
  2. ^ a b c Clifford, A. H. The algebraic theory of semigroups. Preston, G. B. (Reprinted with corrections ed.). Providence, Rhode Island. ISBN 978-1-4704-1234-0. OCLC 882503487.
  3. ^ Hollings, Christopher D. (2017-09-01). "'Nobody could possibly misunderstand what a group is': a study in early twentieth-century group axiomatics". Archive for History of Exact Sciences. 71 (5): 409–481. doi:10.1007/s00407-017-0193-8. ISSN 1432-0657. PMC 5573778. PMID 28912607.
  4. ^ a b c d Clifford, A. H. (1933). "A System Arising from a Weakened Set of Group Postulates". Annals of Mathematics. 34 (4): 865–871. doi:10.2307/1968703. ISSN 0003-486X.
  5. ^ "java.time (Java Platform SE 8 )". docs.oracle.com. Retrieved 2021-06-03.