Open main menu

Rh disease (also known as rhesus isoimmunization, Rh (D) disease) is a type of hemolytic disease of the fetus and newborn (HDFN). HDFN due to anti-D antibodies is the proper and currently used name for this disease as the Rh blood group system actually has more than 50 antigens and not only D-antigen. The term "Rh Disease" is not the current terminology but it is commonly used to refer to HDFN due to anti-D antibodies, and prior to the discovery of anti-Rho(D) immune globulin, it was the most common type of HDFN. The disease ranges from mild to severe, and occurs in the second or subsequent pregnancies of Rh-D negative women when the biologic father is Rh-D positive.

Rh disease
SpecialtyPediatrics, Transfusion Medicine Edit this on Wikidata

Fortunately, due to several astounding advances in modern medicine, HDFN due to anti-D is preventable by treating the mother during pregnancy and soon after delivery with an injection of anti-Rho(D) (RhoGam) immune globulin. With successful mitigation of this disease by prevention through the use of anti-Rho(D) immune globulin, other antibodies are more commonly the cause of HDFN today.

HistoryEdit

In 1939 Drs. Philip Levine and Rufus E. Stetson published their findings about a 25 year old mother who had a stillborn baby that died of hemolytic disease of the newborn.[1] Both parents were blood group O, so the husband's blood was used to give his wife a blood transfusion due to blood loss during delivery. However, she suffered a severe transfusion reaction. Since both parents were blood group O, which was believed to be compatible for transfusion, they concluded that there must be a previously undiscovered blood group antigen that was present on the husband's red blood cells (RBCs) but not present on his wife's. This suggested for the first time that a mother could make blood group antibodies because of immune sensitization to her fetus's RBCs as her only previous exposure would be the earlier pregnancy. They did not name this blood group antigen at the time, which is why the discovery of the rhesus blood type is credited to Drs. Karl Landsteiner and Alexander S. Wiener [2] with their first publication of their tables for blood-typing and cross-matching in 1940, which was the culmination of years of work. However, there were multiple participants in this scientific race and almost simultaneous publications on this topic. Dr. Philip Levine published his theory that the disease known as erythroblastosis fetalis was due to Rh alloimmunization in 1941 while Drs. Karl Landsteiner and Alexander Wiener published their method to type patients for an antibody causing transfusion reactions, known as “Rh".[3][4][5]

The first treatment for Rh disease was an exchange transfusion, which was invented by Dr. Alexander S. Wiener [6] and later refined by Dr. Harry Wallerstein,.[7] The procedure has been improved and refined over the years and is still in use for severe cases resulting in hundreds of thousands of lives saved. However, this could only treat the disease after it took root and did not do anything to prevent the disease. In 1960, Ronald Finn, in Liverpool, England proposed that the disease might be prevented by injecting the at-risk mother with an antibody against fetal red blood cells (anti-RhD).[8] Nearly simultaneously, Dr. William Pollack,[9] an immunologist and protein chemist at Ortho Pharmaceutical Corporation, and Dr. John Gorman (blood bank director at Columbia-Presbyterian) with Dr. Vincent Freda (an obstetrician at Columbia-Presbyterian Medical Center), came to the same realization in New York City. The three of them set out to prove it by injecting a group of male prisoners at Sing Sing Correctional Facility with antibody provided by Ortho, obtained by a fractionation technique developed by Pollack.[10]

Animal studies had previously been conducted by Dr. Pollack using a rabbit model of Rh.[11] This model, named the rabbit HgA-F system, was an exquisite animal model of human Rh, and enabled Pollack's team to gain experience in preventing hemolytic disease in rabbits by giving specific HgA antibody, as was later done with Rh-negative mothers. One of the needs was a dosing experiment that could be used to determine the level of circulating Rh-positive cells in an Rh-negative pregnant female derived from her Rh-positive fetus. This was first done in the rabbit system, but subsequent human tests at the University of Manitoba conducted under Dr. Pollack's direction confirmed that anti-Rho(D) immune globulin could prevent alloimmunization during pregnancy.

Ms. Marianne Cummins was the first at risk woman to receive a prophylactic injection of anti-Rho(D) immune globulin (RHIG) after its regulatory approval.[12] Clinical trials were set up in 42 centers in the US, Great Britain, Germany, Sweden, Italy, and Australia. RHIG was finally approved in England and the United States in 1968.[13] The FDA approved the drug under the brand name RhoGAM, with a fixed dose of 300 µG, to be given within three days (72 hours) postpartum. Subsequently a broader peripartum period was approved for dosing which included prophylaxis during pregnancy. Within a year, the antibody had been injected with great success into more than 500,000 women. Time magazine picked it as one of the top ten medical achievements of the 1960s. By 1973, it was estimated that in the US alone, over 50,000 babies' lives had been saved. The use of Rh immune globulin to prevent the disease in babies of Rh negative mothers has become standard practice, and the disease, which used to claim the lives of 10,000 babies each year in the US alone, has been virtually eradicated in the developed world. In 1980, Cyril Clarke, Ronald Finn, John Gorman, Vincent Freda, and William Pollack each received an Albert Lasker Award for Clinical Medical Research for their work on rhesus blood types and the prevention of Rh disease.

PathophysiologyEdit

During birth or throughout the pregnancy, the mother may be exposed to the infant's blood, and this causes the immune system to respond to the red blood cells as foreign and mount a response by creating antibodies. During the first pregnancy, the initial exposure to fetal RBCs results in the formation of IgM antibodies, and these do not cross the placental barrier, which is why no effects are seen in first pregnancies for Rh-D mediated disease. However, in subsequent pregnancies, the immune system mounts a memory response when re-exposed, and these antibodies (IgG) do cross the placenta into fetal circulation. These antibodies are directed against a protein found on the surface of the fetal red blood cells (RBCs). The antibody coated fetal red blood cells are destroyed. The resulting anemia has multiple sequelae:[14][15][16]

(1) The immature hematopoietic system of the fetus is taxed as the liver and spleen attempt to put immature RBCs into circulation (erythroblasts, thus the previous name for this disease erythroblastosis fetalis).

(2) As the liver and spleen enlarge under this unexpected demand for RBCs, a condition called portal hypertension develops, and this taxes the immature heart and circulatory system.

(3) Liver enlargement and the prolonged need for RBC production results in decreased ability to make other proteins, such as albumin, and this decreases the oncotic pressure leading to leakage of fluid into tissues and body cavities, termed hydrops fetalis.

(4) The severe anemia taxes the heart to compensate by increasing output in an effort to deliver oxygen to the tissues and results in a condition called high output cardiac failure.

(5) If left untreated, the end result may be fetal death.

The destruction of RBCs leads to elevated bilirubin levels (hyperbilirubinemia) as a byproduct. This is not generally a problem during pregnancy, as the maternal circulation can compensate. However, once the infant is delivered, the immature system is not able to handle this amount of bilirubin alone and jaundice or kernicterus (bilirubin deposition in the brain) can develop which may lead to brain damage or death.

Sensitizing events during pregnancy include c-section, miscarriage, therapeutic abortion, amniocentesis, ectopic pregnancy, abdominal trauma and external cephalic version. However, in many cases there was no apparent sensitizing event. Approximately 50% of Rh-D positive infants with circulating anti-D are either unaffected or only mildly affected requiring no treatment at all and only monitoring. An additional 20% are severely affected and require transfusions while still in the uterus. This pattern is similar to other types of HDFN due to other commonly encountered antibodies (anti-c, anti-K, and Fy(a)).

DiagnosisEdit

Maternal blood
In the United States, it is a standard of care to test all expecting mothers for the presence or absence of the RhD protein on their RBCs. However, when medical care is unavailable or prenatal care not given for any other reason, the window to prevent the disease may be missed. In addition, there is more widespread use of molecular techniques to avoid missing women who appear to be Rh-D positive but are actually missing portions of the protein or have hybrid genes creating altered expression of the protein and still at risk of HDFN due to Anti-D.[17][18]
  • At the first prenatal visit, the mother is typed for ABO blood type and the presence or absence of RhD using a method sensitive enough to detect weaker versions of this antigen (known as weak-D) and a screen for antibodies is performed.
    • If she is negative for RhD protein expression and has not formed anti-D already, she is a candidate for RhoGam prophylaxis to prevent alloimmunization.
    • If she is positive for anti-D antibodies, the pregnancy will be followed with monthly titers (levels) of the antibody to determine if any further intervention is needed.
  • A screening test to detect for the presence or absence of fetal cells can help determine if a quantitative test (Kleihauer-Betke or flow cytometry) is needed. This is done when exposure is suspected due to a potential sensitizing event (such as a car accident or miscarriage).
  • If the screening test is positive or the appropriate dose of RhoGam needs to be determined, a quantitative test is performed to determine a more precise amount of fetal blood to which the mother has been exposed.
    • The Kleihauer–Betke test or Flow Cytometry on a maternal blood sample are the most common ways to determine this, and the appropriate dose of RhoGam is calculated based on this information.
  • There are also emerging tests using Cell-free DNA. Blood is taken from the mother, and using PCR, can detect fetal DNA.[19] This blood test is non-invasive to the fetus and can help determine the risk of HDFN. Testing has proven very accurate and is routinely done in the UK at the International Blood Group Reference Laboratory in Bristol.[20]
Paternal Blood

Blood is generally drawn from the father to help determine fetal antigen status.[21] If he is homozygous for the antigen, there is a 100% chance of all offspring in the pairing to be positive for the antigen and at risk for HDFN. If he is heterozygous, there is a 50% chance of offspring to be positive for the antigen.[22]

PreventionEdit

All RhD negative pregnant women should receive RhoGam at 28 weeks gestation and within 72 hours after childbirth in addition to doses with any sensitizing event (miscarriage, trauma, bleeding). Most RhD mediated disease can be prevented if this is done. There are theories as to why or how this works, but none have been proven definitively to be the case. In addition, there has been research into finding a non-human derived version of this antibody, but none have been as effective as the currently available human derived formulations.

ManagementEdit

**As medical management advances in this field, it is important that these patients be followed by high risk obstetricians/maternal-fetal medicine, and skilled neonatologists postpartum to ensure the most up to date and appropriate standard of care**
Antenatal
  • Once a woman has been found to have made anti-D (or any clinically significant antibody against fetal red cells), she is followed as a high risk pregnancy with serial blood draws to determine the next steps
  • Once the titer of anti-D reaches a certain threshold (normally 8 to 16), serial Ultrasound and Doppler examinations are performed to detect signs of fetal anemia
    • Detection of increased blood flow velocities in the fetus are a surrogate marker for fetal anemia that may require more invasive intervention
  • If the flow velocity is found to be elevated a determination of the severity of anemia needs to ensue to determine if an intrauterine transfusion is necessary
    • This is normally done with a procedure called percutaneous umbilical cord blood sampling (PUBS or cordocentesis) [23]
  • Intrauterine blood transfusion
    • Intraperitoneal transfusion—blood transfused into fetal abdomen
    • Intravascular transfusion—blood transfused into fetal umbilical vein—This is the method of choice since the late 1980s, and more effective than intraperitoneal transfusion. A sample of fetal blood can be taken from the umbilical vein prior to the transfusion.
    • Often, this is all done at the same PUBS procedure to avoid the needs for multiple invasive procedures with each transfusion
Postnatal
  • Phototherapy for neonatal jaundice in mild disease
  • Exchange transfusion if the neonate has moderate or severe disease
  • Intravenous Immunoglobulin (IVIG) can be used to reduce the need for exchange transfusion and to shorten the length of phototherapy.[24][25]

ReferencesEdit

  1. ^ Levine, Philip; Stetson, Rufus E. (1939). "An Unusual Case of Intra-Group Agglutination". Journal of the American Medical Association. 113 (2): 126–7. doi:10.1001/jama.1939.72800270002007a.
  2. ^ Landsteiner, K.; Wiener, A. S. (1940). "An Agglutinable Factor in Human Blood Recognized by Immune Sera for Rhesus Blood". Experimental Biology and Medicine. 43: 223. doi:10.3181/00379727-43-11151.
  3. ^ Landsteiner, K. (1941-10-01). "STUDIES ON AN AGGLUTINOGEN (Rh) IN HUMAN BLOOD REACTING WITH ANTI-RHESUS SERA AND WITH HUMAN ISOANTIBODIES". Journal of Experimental Medicine. 74 (4): 309–320. doi:10.1084/jem.74.4.309. ISSN 0022-1007.
  4. ^ LEVINE, P.; VOGEL, P.; KATZIN, E. M.; BURNHAM, L. (1941-10-17). "PATHOGENESIS OF ERYTHROBLASTOSIS FETALIS: STATISTICAL EVIDENCE". Science. 94 (2442): 371–372. doi:10.1126/science.94.2442.371. ISSN 0036-8075.
  5. ^ Zimmerman, DR (1973). Rh: The Intimate History of a Disease and Its Conquest. Macmillan Publishing Co.
  6. ^ Reid, Marion E. (October 2008). "Alexander S. Wiener: the man and his work". Transfusion Medicine Reviews. 22 (4): 300–316. doi:10.1016/j.tmrv.2008.05.007. ISSN 1532-9496. PMID 18848157.
  7. ^ Wallerstein, H. (1946). "Treatment of Severe Erythroblastosis by Simultaneous Removal and Replacement of the Blood of the Newborn Infant". Science. 103 (2680): 583. Bibcode:1946Sci...103..583W. doi:10.1126/science.103.2680.583. PMID 21026828.
  8. ^ Wright, Pearce (2004-06-26). "Ronald Finn". Lancet. 363 (9427): 2195. doi:10.1016/S0140-6736(04)16525-2. ISSN 1474-547X. PMID 15248345.
  9. ^ "William Pollack dies at 87; helped conquer deadly Rh disease". Los Angeles Times. 2013-11-17. Retrieved 2019-09-11.
  10. ^ Freda, V. J.; Gorman, J. G.; Pollack, W. (January 1964). "SUCCESSFUL PREVENTION OF EXPERIMENTAL RH SENSITIZATION IN MAN WITH AN ANTI-RH GAMMA2-GLOBULIN ANTIBODY PREPARATION: A PRELIMINARY REPORT". Transfusion. 4: 26–32. doi:10.1111/j.1537-2995.1964.tb02824.x. ISSN 0041-1132. PMID 14105934.
  11. ^ Pollack, W.; Gorman, J. G.; Hager, H. J.; Freda, V. J.; Tripodi, D. (1968-05-06). "Antibody-Mediated Immune Suppression to the Rh Factor: Animal Models Suggesting Mechanism of Action". Transfusion. 8 (3): 134–145. doi:10.1111/j.1537-2995.1968.tb04891.x. ISSN 0041-1132.
  12. ^ Vossoughi, Sarah; Spitalnik, Steven L. (July 2019). "Conquering erythroblastosis fetalis: 50 years of RhIG". Transfusion. 59 (7): 2195–2196. doi:10.1111/trf.15307. ISSN 0041-1132.
  13. ^ Pollack, W.; Gorman, J. G.; Ereda, V. J.; Ascari, W. Q.; Allen, A. E.; Baker, W. J. (1968-05-06). "Results of Clinical Trials of RhoGAM in Women". Transfusion. 8 (3): 151–153. doi:10.1111/j.1537-2995.1968.tb04895.x. ISSN 0041-1132.
  14. ^ MAITRA, ANIRBAN (2010), "Diseases of Infancy and Childhood", Robbins and Cotran Pathologic Basis of Disease, Elsevier, pp. 447–483, ISBN 9781437707922, retrieved 2019-09-11
  15. ^ Wong, EC, ed. (2015). Alloimmune cytopenias. In: Pediatric Transfusion: A physician’s handbook. 4th ed. AABB. pp. 45–61.CS1 maint: extra text: authors list (link)
  16. ^ Fung MK, Grossman BJ, Hillyer CD, Westhoff CM, eds (2014). Technical Manual. 18th ed. Bethesda, MD: AABB.CS1 maint: multiple names: authors list (link) CS1 maint: extra text: authors list (link)
  17. ^ Kacker, Seema; Vassallo, Ralph; Keller, Margaret A.; Westhoff, Connie M.; Frick, Kevin D.; Sandler, S. Gerald; Tobian, Aaron A.R. (2015-03-21). "Financial implications ofRHDgenotyping of pregnant women with a serologic weak D phenotype". Transfusion. 55 (9): 2095–2103. doi:10.1111/trf.13074. ISSN 0041-1132.
  18. ^ Fasano, Ross M. (February 2016). "Hemolytic disease of the fetus and newborn in the molecular era". Seminars in Fetal and Neonatal Medicine. 21 (1): 28–34. doi:10.1016/j.siny.2015.10.006. ISSN 1744-165X.
  19. ^ Fasano, Ross M. (February 2016). "Hemolytic disease of the fetus and newborn in the molecular era". Seminars in Fetal and Neonatal Medicine. 21 (1): 28–34. doi:10.1016/j.siny.2015.10.006. ISSN 1744-165X.
  20. ^ Finning, Kirstin; Martin, Peter; Summers, Joanna; Daniels, Geoff (2007). "Fetal genotyping for the K (Kell) and Rh C, c, and E blood groups on cell-free fetal DNA in maternal plasma". Transfusion. 47 (11): 2126–33. doi:10.1111/j.1537-2995.2007.01437.x. PMID 17958542.
  21. ^ Scheffer, PG; Van Der Schoot, CE; Page-Christiaens, Gcml; De Haas, M (2011). "Noninvasive fetal blood group genotyping of rhesus D, c, E and of K in alloimmunised pregnant women: Evaluation of a 7-year clinical experience". BJOG: An International Journal of Obstetrics & Gynaecology. 118 (11): 1340–8. doi:10.1111/j.1471-0528.2011.03028.x. PMID 21668766.
  22. ^ Transfusion Medicine and Hemostasis: Clinical and Laboratory Aspects ISBN 978-0-12-397788-5[page needed]
  23. ^ "Percutaneous Umbilical Cord Blood Sampling". pennmedicine.adam.com. Retrieved 2019-09-11.
  24. ^ Gottstein, R (2003). "Systematic review of intravenous immunoglobulin in haemolytic disease of the newborn". Archives of Disease in Childhood: Fetal and Neonatal Edition. 88 (1): F6–10. doi:10.1136/fn.88.1.F6. PMC 1755998. PMID 12496219.
  25. ^ Webb, Jennifer; Delaney, Meghan (October 2018). "Red Blood Cell Alloimmunization in the Pregnant Patient". Transfusion Medicine Reviews. 32 (4): 213–219. doi:10.1016/j.tmrv.2018.07.002. ISSN 1532-9496. PMID 30097223.
  • Friesen A.D., Bowman J.M., Price H.W. (1981). "Column Ion Exchange Preparation and Characterization of an Rh Immune Globulin (WinRho) for Intravenous Use". J. Appl. Biochem. 3: 164–175.CS1 maint: multiple names: authors list (link)

External linksEdit