Open main menu

Wikipedia β

In complex analysis, a discipline within mathematics, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula. From a geometrical perspective, it is a special case of the generalized Stokes' theorem.

Contents

StatementEdit

The statement is as follows:

 
Illustration of the setting.

Let U be a simply connected open subset of the complex plane containing a finite list of points a1, ..., an, and f a function defined and holomorphic on U \ {a1, ..., an}. Let γ be a closed rectifiable curve in U which does not meet any of the ak, and denote the winding number of γ around ak by I(γ, ak). The line integral of f around γ is equal to 2πi times the sum of residues of f at the points, each counted as many times as γ winds around the point:

 

If γ is a positively oriented simple closed curve, I(γ, ak) = 1 if ak is in the interior of γ, and 0 if not, so

 

with the sum over those ak inside γ.

The relationship of the residue theorem to Stokes' theorem is given by the Jordan curve theorem. The general plane curve γ must first be reduced to a set of simple closed curves {γi} whose total is equivalent to γ for integration purposes; this reduces the problem to finding the integral of f dz along a Jordan curve γi with interior V. The requirement that f be holomorphic on U0 = U \ {ak} is equivalent to the statement that the exterior derivative d(f dz) = 0 on U0. Thus if two planar regions V and W of U enclose the same subset {aj} of {ak}, the regions V \ W and W \ V lie entirely in U0, and hence

 

is well-defined and equal to zero. Consequently, the contour integral of f dz along γj = ∂V is equal to the sum of a set of integrals along paths λj, each enclosing an arbitrarily small region around a single aj — the residues of f (up to the conventional factor 2πi) at {aj}. Summing over {γj}, we recover the final expression of the contour integral in terms of the winding numbers {I(γ, ak)}.

In order to evaluate real integrals, the residue theorem is used in the following manner: the integrand is extended to the complex plane and its residues are computed (which is usually easy), and a part of the real axis is extended to a closed curve by attaching a half-circle in the upper or lower half-plane, forming a semicircle. The integral over this curve can then be computed using the residue theorem. Often, the half-circle part of the integral will tend towards zero as the radius of the half-circle grows, leaving only the real-axis part of the integral, the one we were originally interested in.

ExamplesEdit

An integral along the real axisEdit

The integral

 
 
The contour C.

arises in probability theory when calculating the characteristic function of the Cauchy distribution. It resists the techniques of elementary calculus but can be evaluated by expressing it as a limit of contour integrals.

Suppose t > 0 and define the contour C that goes along the real line from a to a and then counterclockwise along a semicircle centered at 0 from a to a. Take a to be greater than 1, so that the imaginary unit i is enclosed within the curve. Now consider the contour integral

 

Since eitz is an entire function (having no singularities at any point in the complex plane), this function has singularities only where the denominator z2 + 1 is zero. Since z2 + 1 = (z + i)(zi), that happens only where z = i or z = −i. Only one of those points is in the region bounded by this contour. Because f(z) is

 

the residue of f(z) at z = i is

 

According to the residue theorem, then, we have

 

The contour C may be split into a straight part and a curved arc, so that

 

and thus

 

Using some estimations, we have

 

and

 

The estimate on the numerator follows since t > 0, and for complex numbers z along the arc (which lies in the upper halfplane), the argument φ of z lies between 0 and π. So,

 

Therefore

 

If t < 0 then a similar argument with an arc C that winds around i rather than i shows that

 
The contour C.
 

and finally we have

 

(If t = 0 then the integral yields immediately to elementary calculus methods and its value is π.)

An infinite sumEdit

The fact that π cot(πz) has simple poles with residue one at each integer can be used to compute the sum

 

Consider, for example, f(z) = z−2. Let ΓN be the rectangle that is the boundary of [−N1/2, N + 1/2]2 with positive orientation, with an integer N. By the residue formula,

 

The left-hand side goes to zero as N → ∞ since the integrand has order O(N−2). On the other hand,[1]

 

(In fact, z/2 cot(z/2) = iz/1 − eiziz/2.) Thus, the residue Resz = 0 is π2/3. We conclude:

 

which is a proof of the Basel problem.

The same trick can be used to establish

 

that is, the Eisenstein series.

We take f(z) = (wz)−1 with w a non-integer and we shall show the above for w. The difficulty in this case is to show the vanishing of the contour integral at infinity. We have:

 

since the integrand is an even function and so the contributions from the contour in the left-half plane and the contour in the right cancel each other out. Thus,

 

goes to zero as N → ∞.

See alsoEdit

ReferencesEdit

  1. ^ Whittaker, E. T.; Watson, G. N. (1902). A Course of Modern Analysis. Cambridge University Press. § 7.2. 

External linksEdit