In magnetic confinement fusion, quasisymmetry (sometimes hyphenated as quasi-symmetry) is a type of continuous symmetry in the magnetic field strength of a stellarator.[1] Quasisymmetry is desired, as Noether's theorem implies that there exists a conserved quantity in such cases. This conserved quantity ensures that particles stick to the flux surface, resulting in better confinement and neoclassical transport.

A flux surface and coils of NCSX, a quasi-symmetric stellarator.

It is currently unknown if it is mathematically possible to construct a quasi-symmetric magnetic field which upholds magnetohydrodynamic force balance, which is required for stability. There are stellarator designs which are very close to being quasisymmetric,[2] and it is possible to find solutions by generalizing the magnetohydrodynamic force balance equation.[3] Quasisymmetric systems are a subset of omnigenous systems. The Helically Symmetric eXperiment and the National Compact Stellarator Experiment are designed to be quasisymmetric.[citation needed]

References edit

  1. ^ Boozer, Allen H. (1983). "Transport and isomorphic equilibria". Physics of Fluids. 26 (2): 496. Bibcode:1983PhFl...26..496B. doi:10.1063/1.864166.
  2. ^ Landreman, Matt; Paul, Elizabeth (18 January 2022). "Magnetic Fields with Precise Quasisymmetry for Plasma Confinement". Physical Review Letters. 128 (3): 035001. arXiv:2108.03711. Bibcode:2022PhRvL.128c5001L. doi:10.1103/PhysRevLett.128.035001. PMID 35119901. S2CID 244731252.
  3. ^ Rodríguez, E.; Bhattacharjee, A. (January 2021). "Solving the problem of overdetermination of quasisymmetric equilibrium solutions by near-axis expansions. I. Generalized force balance". Physics of Plasmas. 28 (1): 012508. arXiv:2008.04715. Bibcode:2021PhPl...28a2508R. doi:10.1063/5.0027574. ISSN 1070-664X. S2CID 221095564.