Quantum signal processing

Quantum Signal Processing is a Hamiltonian simulation algorithm with optimal lower bounds in query complexity. It linearizes the operator of a quantum walk using eigenvalue transformation. The quantum walk takes a constant number of queries. So quantum signal processing's cost depends on the constant number of calls to the quantum walk operator, number of single qubit quantum gates that aid in the eigenvalue transformation and an ancilla qubit.[1]

Eigenvalue transformation edit

Given a unitary  , calculate  . For example, if  ,  . [1]

Algorithm edit

Input: Given a Hamiltonian  , define a quantum walk operator   using 2 d-sparse oracles   and  .   accepts inputs   and   (  is the row of the Hamiltonian and   is the column) and outputs  , so querying  .   accepts inputs   and   and computes the   non-zero element in the   row of  . [2]
Output:  
  1. Create an input state  
  2. Define a controlled-gate,  
  3. Repeatedly apply single qubit gates to the ancilla followed applications of   to the register that contains     times.

See also edit

References edit

  1. ^ a b Low, Guang Hao; Chuang, Isaac (2017). "Optimal Hamiltonian Simulation by Quantum Signal Processing". Physical Review Letters. 118 (1): 010501. arXiv:1606.02685. Bibcode:2017PhRvL.118a0501L. doi:10.1103/PhysRevLett.118.010501. PMID 28106413. S2CID 1118993.
  2. ^ Guan Hao Low (January 17, 2017). Optimal Hamiltonian simulation by quantum signal processing (YouTube). Retrieved September 9, 2019.