Polar set (potential theory)

In mathematics, in the area of classical potential theory, polar sets are the "negligible sets", similar to the way in which sets of measure zero are the negligible sets in measure theory.

Definition

edit

A set   in   (where  ) is a polar set if there is a non-constant subharmonic function

  on  

such that

 

Note that there are other (equivalent) ways in which polar sets may be defined, such as by replacing "subharmonic" by "superharmonic", and   by   in the definition above.

Properties

edit

The most important properties of polar sets are:

  • A singleton set in   is polar.
  • A countable set in   is polar.
  • The union of a countable collection of polar sets is polar.
  • A polar set has Lebesgue measure zero in  

Nearly everywhere

edit

A property holds nearly everywhere in a set S if it holds on SE where E is a Borel polar set. If P holds nearly everywhere then it holds almost everywhere.[1]

See also

edit

References

edit
  1. ^ Ransford (1995) p.56
  • Doob, Joseph L. (1984). Classical Potential Theory and Its Probabilistic Counterpart. Grundlehren der Mathematischen Wissenschaften. Vol. 262. Berlin Heidelberg New York: Springer-Verlag. ISBN 3-540-41206-9. Zbl 0549.31001.
  • Helms, L. L. (1975). Introduction to potential theory. R. E. Krieger. ISBN 0-88275-224-3.
  • Ransford, Thomas (1995). Potential theory in the complex plane. London Mathematical Society Student Texts. Vol. 28. Cambridge: Cambridge University Press. ISBN 0-521-46654-7. Zbl 0828.31001.
edit