Monoecy

  (Redirected from Monoecious)
Monoecy.jpg

Monoecy is a sexual system in seed plants where separate male and female cones or flowers are present on the same plant.[1] It is a monomorphic sexual system alongside gynomonoecy, andromonoecy and trimonoecy.[2]

Monoecy in angiosperms has been an interest for evolutionary biologists since Charles Darwin.[3]

TerminologyEdit

Monoecious comes from the Greek words for one house.[4]

HistoryEdit

The term monoecy was first introduced in 1735 by Carl Linnaeus.[1] Darwin noted that the flowers of monoecious species sometimes showed traces of the opposite sex function.[5] Monoecious hemp was first reported in 1929.[6]

OccurrenceEdit

Monoecy is most common in temperate climates[7] and is often associated with inefficient pollinators or wind-pollinated plants.[8][9] It may be beneficial to reducing pollen-stigma interference,[clarification needed] thus increasing seed production.[10]

Around 10% of all seed plant species are monoecious.[7] It is present in 7% of angiosperms.[11] Most Cucurbitaceae are monoecious[12] including most watermelon cultivars.[13] It is prevalent in Euphorbiaceae.[14] Dioecy is replaced by monoecy in the polyploid subspecies of Empetrum nigrum, Empetrum nigrum ssp. hermaphroditum and polyploid populations of Mercurialis annua.[15]

EvolutionEdit

The evolution of monoecy has received little attention.[5] Male and female flowers evolve from hermaphroditic flowers[16] via andromonoecy or gynomonoecy.[17]

In Amaranths monoecy may have evolved from hermaphroditism through various processes caused by male sterility genes and female fertility genes.[18]

Monoecy is considered to be a step in the evolutionary pathway from hermaphroditism towards dioecy.[19] The evolution from dioecy to monoecy probably involves disruptive selection on floral sex ratios.[20]

See alsoEdit

ReferencesEdit

  1. ^ a b Batygina, T. B. (2019-04-23). Embryology of Flowering Plants: Terminology and Concepts, Vol. 3: Reproductive Systems. CRC Press. p. 43. ISBN 978-1-4398-4436-6.
  2. ^ Torices, Rubén; Méndez, Marcos; Gómez, José María (2011). "Where do monomorphic sexual systems fit in the evolution of dioecy? Insights from the largest family of angiosperms". New Phytologist. 190 (1): 234–248. doi:10.1111/j.1469-8137.2010.03609.x. ISSN 1469-8137. PMID 21219336.
  3. ^ Nozaki, Hisayoshi; Mahakham, Wuttipong; Heman, Wirawan; Matsuzaki, Ryo; Kawachi, Masanobu (2020-07-02). "A new preferentially outcrossing monoicous species of Volvox sect. Volvox (Chlorophyta) from Thailand". PLOS ONE. 15 (7): e0235622. doi:10.1371/journal.pone.0235622. ISSN 1932-6203. PMC 7332039. PMID 32614898.
  4. ^ Purves, William K.; Sadava, David E.; Orians, Gordon H.; Heller, H. Craig (2001). Life: The Science of Biology. Macmillan. p. 192. ISBN 978-0-7167-3873-2.
  5. ^ a b Pedersen, Roger A.; Schatten, Gerald P. (1998-02-03). Current Topics in Developmental Biology. Academic Press. p. 180. ISBN 978-0-08-058461-4.
  6. ^ Rowell, Roger M.; Rowell, Judith (1996-10-15). Paper and Composites from Agro-Based Resources. CRC Press. p. 49. ISBN 978-1-56670-235-5.
  7. ^ a b Willmer, Pat (2011-07-05). Pollination and Floral Ecology. Princeton University Press. p. 85. ISBN 978-1-4008-3894-3.
  8. ^ Glover, Beverley (February 2014). Understanding Flowers and Flowering Second Edition. Oxford University Press. p. 139. ISBN 978-0-19-966159-6.
  9. ^ Friedman, Janice; Barrett, Spencer C. H. (January 2009). "The Consequences of Monoecy and Protogyny for Mating in Wind-Pollinated Carex". The New Phytologist. 181 (2): 489–497. doi:10.1111/j.1469-8137.2008.02664.x. JSTOR 30224692. PMID 19121043. Retrieved 26 July 2021.
  10. ^ Patiny, Sébastien (2011-12-08). Evolution of Plant-Pollinator Relationships. Cambridge University Press. p. 33. ISBN 978-1-139-50407-2.
  11. ^ Karasawa, Marines Marli Gniech (2015-11-23). Reproductive Diversity of Plants: An Evolutionary Perspective and Genetic Basis. Springer. p. 28. ISBN 978-3-319-21254-8.
  12. ^ Pessarakli, Mohammad (2016-02-22). Handbook of Cucurbits: Growth, Cultural Practices, and Physiology. CRC Press. p. 171. ISBN 978-1-4822-3459-6.
  13. ^ Prohens-Tomás, Jaime; Nuez, Fernando (2007-12-06). Vegetables I: Asteraceae, Brassicaceae, Chenopodicaceae, and Cucurbitaceae. Springer Science & Business Media. p. 390. ISBN 978-0-387-30443-4.
  14. ^ Bahadur, Bir; Sujatha, Mulpuri; Carels, Nicolas (2012-12-14). Jatropha, Challenges for a New Energy Crop: Volume 2: Genetic Improvement and Biotechnology. Springer Science & Business Media. p. 27. ISBN 978-1-4614-4915-7.
  15. ^ Volz, Stefanie M.; Renner, Susanne S. (2008). "Hybridization, polyploidy and evolutionary transitions between monoecy and dioecy in Bryonia (Cucurbitaceae)". American Journal of Botany. 95 (10): 1297–1306. doi:10.3732/ajb.0800187. PMID 21632334.
  16. ^ Núñez-Farfán, Juan; Valverde, Pedro Luis (2020-07-30). Evolutionary Ecology of Plant-Herbivore Interaction. Springer Nature. p. 177. ISBN 978-3-030-46012-9.
  17. ^ Das, Saubhik (2016-07-25). Amaranthus: A Promising Crop of Future. Springer. p. 148. ISBN 978-981-10-1469-7.
  18. ^ Das, Saubhik (2016-07-25). Amaranthus: A Promising Crop of Future. Springer. p. 150. ISBN 978-981-10-1469-7.
  19. ^ Leonard, Janet L. (2019-05-21). Transitions Between Sexual Systems: Understanding the Mechanisms of, and Pathways Between, Dioecy, Hermaphroditism and Other Sexual Systems. Springer. p. 91. ISBN 978-3-319-94139-4.
  20. ^ Avise, John (2011-03-15). Hermaphroditism: A Primer on the Biology, Ecology, and Evolution of Dual Sexuality. Columbia University Press. p. 65. ISBN 978-0-231-15386-7.