List of materials properties

  (Redirected from Material properties)

A materials property is an intensive property of some material, i.e., a physical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one material versus another can be compared, thereby aiding in materials selection.

A property may be a constant or may be a function of one or more independent variables, such as temperature. Materials properties often vary to some degree according to the direction in the material in which they are measured, a condition referred to as anisotropy. Materials properties that relate to different physical phenomena often behave linearly (or approximately so) in a given operating range[further explanation needed]. Modeling them as linear functions can significantly simplify the differential constitutive equations that are used to describe the property.

Equations describing relevant materials properties are often used to predict the attributes of a system.

The properties are measured by standardized test methods. Many such methods have been documented by their respective user communities and published through the Internet; see ASTM International.

Acoustical propertiesEdit

Atomic propertiesEdit

Chemical propertiesEdit

Electrical propertiesEdit

Magnetic propertiesEdit

Manufacturing propertiesEdit

Hindrance is property in metal of magnetic

Mechanical propertiesEdit

  • Brittleness: Ability of a material to break or shatter without significant deformation when under stress; opposite of plasticity, examples: glass, concrete, cast iron, ceramics etc.
  • Bulk modulus: Ratio of pressure to volumetric compression (GPa) or ratio of the infinitesimal pressure increase to the resulting relative decrease of the volume.
  • Coefficient of restitution: the ratio of the final to initial relative velocity between two objects after they collide. Range : 0-1, 1 for perfectly elastic collision.
  • Compressive strength: Maximum stress a material can withstand before compressive failure (MPa)
  • Creep: The slow and gradual deformation of an object with respect to time
  • Ductility: Ability of a material to deform under tensile load (% elongation)
  • Durability: Ability to withstand wear, pressure, or damage; hard-wearing.
  • Elasticity: Ability of a body to resist a distorting influence or stress and to return to its original size and shape when the stress is removed
  • Fatigue limit: Maximum stress a material can withstand under repeated loading (MPa)
  • Flexibility: Ability of an object to bend or deform in response to an applied force; pliability; complementary to stiffness
  • Flexural modulus
  • Flexural strength : The stresses in a material just before it yields.
  • Fracture toughness: Ability of a material containing a crack to resist fracture (J/m^2)
  • Friction coefficient: The amount of force normal to surface which converts to force resisting relative movement of contacting surfaces between material pair
  • Hardness: Ability to withstand surface indentation and scratching (e.g. Brinell hardness number)
  • Malleability: Ability of the material to be flattened into thin sheets under applications of heavy compressive forces without cracking by hot or cold working means.
  • Mass diffusivity: Ability of one substance to diffuse through another
  • Plasticity: Ability of a material to undergo irreversible or permanent deformations without breaking or rupturing; opposite of brittleness
  • Poisson's ratio: Ratio of lateral strain to axial strain (no units)
  • Resilience: Ability of a material to absorb energy when it is deformed elastically (MPa); combination of strength and elasticity
  • Shear modulus: Ratio of shear stress to shear strain (MPa)
  • Shear strength: Maximum shear stress a material can withstand
  • Slip: A tendency of a material's particles to undergo plastic deformation due to a dislocation motion within the material. Common in Crystals.
  • Specific modulus: Modulus per unit volume (MPa/m^3)
  • Specific strength: Strength per unit density (Nm/kg)
  • Specific weight: Weight per unit volume (N/m^3)
  • Stiffness: Ability of an object to resist deformation in response to an applied force; rigidity; complementary to flexibility
  • Surface roughness:the deviations in the direction of the normal vector of a real surface from its ideal form.
  • Tensile strength: Maximum tensile stress of a material can withstand before failure (MPa)
  • Toughness: Ability of a material to absorb energy (or withstand shock) and plastically deform without fracturing (or rupturing); a material's resistance to fracture when stressed; combination of strength and plasticity
  • Viscosity: A fluid's resistance to gradual deformation by tensile or shear stress; thickness
  • Yield strength: The stress at which a material starts to yield plastically (MPa)
  • Young's modulus: Ratio of linear stress to linear strain (MPa)
  • Strength of materials (relation of various strengths) etc.

Optical propertiesEdit

Radiological propertiesEdit

Thermal propertiesEdit

See alsoEdit