Maiken Mikkelsen is a physicist who won the Maria Goeppert Mayer award from the American Physical Society in 2017 for her work in quantum nanophotonics.[1] She is currently the James N. and Elizabeth H. Barton Associate Professor of Electrical and Computer Engineering [2] and an associate professor of physics at Duke University.

Education

edit

Maiken Mikkelsen received her B.S. in physics in 2004 from the University of Copenhagen.[1] She received her Ph.D. in physics in 2009 from the University of California, Santa Barbara, where she studied single electron spin dynamics in semiconductors for her Ph.D. thesis and for which she won the 2011 Thesis Prize from the Quantum Electronics and Optical Division (QEOD) of the European Physical Society.[3] She did a postdoctoral research fellowship at the University of California at Berkeley before joining the faculty at Duke University in 2012.[1]

Research interests

edit

Mikkelsen's research focuses on light-matter interactions in nanophotonic structures, quantum materials, and novel multi-scale fabrication techniques. Her recent work in "Extreme Nanophotonics" aims to realize unprecedented material properties and behavior by sculpting electromagnetic fields on the molecular scale.[4]

List of awards and honors

edit
  • MURI Award (PI), AFOSR (2021) [5]
  • Stansell Family Distinguished Research Award, Duke University (2021)[6]
  • American Chemical Society (ACS) Photonics Young Investigator Award (2020)[7]
  • Moore Inventor Fellow Award, Gordon and Betty Moore Foundation (2019)[8][9]   
  • National Institutes of Health (NIH) RO1 Award (2019)[10][11]
  • Maria Goeppert Mayer Award, American Physical Society (2017)[12]
  • Early Career Achievement Award, SPIE (International Society for Optics and Photonics) (2017)[13]
  • Young Investigator Program (YIP) Award, Office of Naval Research (2017)[14]   
  • Young Investigator Program (YIP) Award, Army Research Office (2016)
  • Cottrell Scholar Award, Research Corporation for Science Advancement (2016)
  • Scialog Fellow, Research Corporation for Science Advancement (2016)
  • CAREER Award, National Science Foundation (2015)   
  • Young Investigator Program (YIP) Award, Air Force Office of Scientific Research (2015)
  • Ralph E. Powe Junior Faculty Award (2014)  
  • European Physical Society Ph.D. Thesis prize, Quantum Electronics and Optics (2011)   
  • NSF ADVANCE Award, Workshop for Women in Science & Engineering (2009)
  • Center for Nanoscience Innovation for Defense (CNID) Graduate Fellowship (2007)

Major scientific achievements

edit

Revealed record-high spontaneous emission rates. Elucidated the mechanisms behind large Purcell factors and demonstrated record-high 1,000-fold enhancement in the spontaneous emission rate of dye molecules and semiconductor quantum dots (Nature Photonics 8, 835 (2014)[15], Nature Communications 6, 7788 (2015)[16]).

Realized first ultrafast and efficient single photon source. Realized this long-sought goal by embedding single quantum dots in plasmonic cavities. Critical to quantum information and quantum optics communities, as the natural slow emission rate of single photon sources is a limiting factor for many experiments and future applications (Nano Letters 16, 270 (2016)[17]).

Demonstrated first ultrafast, spectrally-selective thermal photodetector. Utilized metasurfaces to create spectrally-selective perfect absorption enabling the use of an only 100 nm pyroelectric thermal detection layer and revealing speeds of <700 ps, an improvement of five-orders-of-magnitude over state-of-the-art. The metasurface also acts as an on-chip spectral filter promising for hyperspectral imaging (Nature Materials 19, 158 (2020)[18]).

Created novel multi-scale fabrication technique to realize large-area structural color. Utilized chemical self-assembly to achieve sub-10 nm gaps between metals to demonstrate spectrally-selective perfect absorbers. Combined with top-down large-scale patterning to realize multi-spectral pixels and ~10,000 plasmonic combinatorial colors. Promising for transformative breakthroughs of e.g. photodetectors and imaging devices (Advanced Materials 27, 8028 (2015)[19], Advanced Materials 29, 1602971 (2017)[20]).

Elucidated benefit of nanogap cavities for point-of-care immunoassays. Integrated a sandwich immunoassay microarray within a plasmonic nanogap cavity resulting in a 151-fold increase in fluorescence and 14-fold improvement in the limit-of-detection for the cardiac biomarker B-type natriuretic peptide (BNP). (Nano Letters 20, 4330 (2020)[21], Advanced Materials 35, 2107986 (2023)[22]).

Showed first, ultrabright single photon source at 1550 nm. Sandwiched colloidal quantum dots in a nanogap cavity to enhance their spontaneous emission rate ~10,000-times. This resulted in single photon emission count rates of 12.6 MHz for quantum dots emitting at 1550 nm and 15 MHz for quantum dots emitting at 1350 nm, corresponding to an improvement of more than two orders of magnitude over state-of-the-art. (Under review, (2024)[4]).

Publications

edit

Her most cited publications are:

  • Akselrod, Gleb M.; Argyropoulos, Christos; Hoang, Thang B.; Ciracì, Cristian; Fang, Chao; Huang, Jiani; Smith, David R.; Mikkelsen, Maiken H. (2014-10-12). "Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas". Nature Photonics. 8 (11). Springer Science and Business Media LLC: 835–840. Bibcode:2014NaPho...8..835A. CiteSeerX 10.1.1.708.1204. doi:10.1038/nphoton.2014.228. ISSN 1749-4885. S2CID 31055460. (cited 550 times according to Google Scholar[23]
  • Zentgraf, Thomas; Liu, Yongmin; Mikkelsen, Maiken H.; Valentine, Jason; Zhang, Xiang (2011-01-23). "Plasmonic Luneburg and Eaton lenses". Nature Nanotechnology. 6 (3). Springer Science and Business Media LLC: 151–155. arXiv:1101.2493. Bibcode:2011NatNa...6..151Z. doi:10.1038/nnano.2010.282. ISSN 1748-3387. PMID 21258334. S2CID 8773190. (cited 277 times according to Google Scholar) [23]
  • Hoang, Thang B.; Akselrod, Gleb M.; Argyropoulos, Christos; Huang, Jiani; Smith, David R.; Mikkelsen, Maiken H. (2015-07-27). "Ultrafast spontaneous emission source using plasmonic nanoantennas". Nature Communications. 6 (1). Springer Science and Business Media LLC: 7788. Bibcode:2015NatCo...6.7788H. doi:10.1038/ncomms8788. ISSN 2041-1723. PMC 4525280. PMID 26212857. (cited 211 times according to Google Scholar) [23]
  • Yang, Ankun; Hoang, Thang B.; Dridi, Montacer; Deeb, Claire; Mikkelsen, Maiken H.; Schatz, George C.; Odom, Teri W. (2015-04-20). "Real-time tunable lasing from plasmonic nanocavity arrays". Nature Communications. 6 (1). Springer Science and Business Media LLC: 6939. Bibcode:2015NatCo...6.6939Y. doi:10.1038/ncomms7939. ISSN 2041-1723. PMC 4411284. PMID 25891212. (cited 210 times according to Google Scholar) [23]
  • Hoang, Thang B.; Akselrod, Gleb M.; Mikkelsen, Maiken H. (2015-12-09). "Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities". Nano Letters. 16 (1). American Chemical Society (ACS): 270–275. doi:10.1021/acs.nanolett.5b03724. ISSN 1530-6984. PMID 26606001. (cited 185 times according to Google Scholar)[23]

References

edit
  1. ^ a b c "2017 Maria Goeppert Mayer Award Recipient". American Physical Society. Retrieved October 22, 2019.
  2. ^ "Maiken Mikkelsen". Duke Pratt School of Engineering. 2019-10-22. Retrieved 2019-10-22.
  3. ^ "QEOD Prizes - QEOD Thesis Prizes - European Physical Society (EPS)". www.eps.org. Retrieved 2019-10-22.
  4. ^ a b "Maiken Mikkelsen". Mikkelsen Lab. Retrieved 2024-07-22.
  5. ^ Thompson, Christopher (2021-03-11). "Capturing All of Light's Data in One Snapshot". Duke Pratt School of Engineering. Retrieved 2024-07-22.
  6. ^ "Pratt School of Engineering Awards". Duke Pratt School of Engineering. Retrieved 2024-07-22.
  7. ^ "2020 ACS Photonics Young Investigator Award Lectureship Goes to Maiken H. Mikkelsen". ACS Publications Chemistry Blog. 2020-11-18. Retrieved 2024-07-22.
  8. ^ "Investigator Detail". www.moore.org. Retrieved 2024-07-22.
  9. ^ Thompson, Christopher (2019-10-15). "Mikkelsen Wins Moore Inventor Fellowship to Pursue Hyperspectral Cameras". Duke Pratt School of Engineering. Retrieved 2024-07-22.
  10. ^ "RePORT ⟩ RePORTER". reporter.nih.gov. Retrieved 2024-07-22.
  11. ^ "Scholars@Duke grant: Plasmonically Enhanced Point-of-care Detection of Cardiac Biomarkers by a Smart Phone". scholars.duke.edu. Retrieved 2024-07-22.
  12. ^ "Maria Goeppert Mayer Award". www.aps.org. Retrieved 2024-07-22.
  13. ^ "SPIE 2017 awards honor biomedical, photonics achievements and dedication to education". spie.org. Retrieved 2024-07-22.
  14. ^ "2017 Young Investigator Award Recipients". Office of Naval Research. 2022-03-18. Retrieved 2024-07-22.
  15. ^ Akselrod, Gleb M.; Argyropoulos, Christos; Hoang, Thang B.; Ciracì, Cristian; Fang, Chao; Huang, Jiani; Smith, David R.; Mikkelsen, Maiken H. (November 2014). "Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas". Nature Photonics. 8 (11): 835–840. doi:10.1038/nphoton.2014.228. ISSN 1749-4893.
  16. ^ Hoang, Thang B.; Akselrod, Gleb M.; Argyropoulos, Christos; Huang, Jiani; Smith, David R.; Mikkelsen, Maiken H. (2015-07-27). "Ultrafast spontaneous emission source using plasmonic nanoantennas". Nature Communications. 6 (1): 7788. doi:10.1038/ncomms8788. ISSN 2041-1723.
  17. ^ Hoang, Thang B.; Akselrod, Gleb M.; Mikkelsen, Maiken H. (2016-01-13). "Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities". Nano Letters. 16 (1): 270–275. doi:10.1021/acs.nanolett.5b03724. ISSN 1530-6984.
  18. ^ Stewart, Jon W.; Vella, Jarrett H.; Li, Wei; Fan, Shanhui; Mikkelsen, Maiken H. (February 2020). "Ultrafast pyroelectric photodetection with on-chip spectral filters". Nature Materials. 19 (2): 158–162. doi:10.1038/s41563-019-0538-6. ISSN 1476-4660.
  19. ^ Akselrod, Gleb M.; Huang, Jiani; Hoang, Thang B.; Bowen, Patrick T.; Su, Logan; Smith, David R.; Mikkelsen, Maiken H. (December 2015). "Large‐Area Metasurface Perfect Absorbers from Visible to Near‐Infrared". Advanced Materials. 27 (48): 8028–8034. doi:10.1002/adma.201503281. ISSN 0935-9648.
  20. ^ Stewart, Jon W.; Akselrod, Gleb M.; Smith, David R.; Mikkelsen, Maiken H. (February 2017). "Toward Multispectral Imaging with Colloidal Metasurface Pixels". Advanced Materials. 29 (6). doi:10.1002/adma.201602971. ISSN 0935-9648.
  21. ^ Cruz, Daniela F.; Fontes, Cassio M.; Semeniak, Daria; Huang, Jiani; Hucknall, Angus; Chilkoti, Ashutosh; Mikkelsen, Maiken H. (2020-06-10). "Ultrabright Fluorescence Readout of an Inkjet-Printed Immunoassay Using Plasmonic Nanogap Cavities". Nano Letters. 20 (6): 4330–4336. doi:10.1021/acs.nanolett.0c01051. ISSN 1530-6984. PMC 7737629. PMID 32375003.
  22. ^ Semeniak, Daria; Cruz, Daniela F.; Chilkoti, Ashutosh; Mikkelsen, Maiken H. (August 2023). "Plasmonic Fluorescence Enhancement in Diagnostics for Clinical Tests at Point‐of‐Care: A Review of Recent Technologies". Advanced Materials. 35 (34). doi:10.1002/adma.202107986. ISSN 0935-9648. PMC 9986847. PMID 35332957.
  23. ^ a b c d e Google Scholar author page [1] Accessed Dec. 16, 2019
edit