Open main menu

Wikipedia β

Diagram of the electric field of a light wave (blue), linear-polarized along a plane (purple line), and consisting of two orthogonal, in-phase components (red and green waves)

In electrodynamics, linear polarization or plane polarization of electromagnetic radiation is a confinement of the electric field vector or magnetic field vector to a given plane along the direction of propagation. See polarization and plane of polarization for more information.

The orientation of a linearly polarized electromagnetic wave is defined by the direction of the electric field vector.[1] For example, if the electric field vector is vertical (alternately up and down as the wave travels) the radiation is said to be vertically polarized.

Contents

Mathematical description of linear polarizationEdit

The classical sinusoidal plane wave solution of the electromagnetic wave equation for the electric and magnetic fields is (cgs units)

 
 

for the magnetic field, where k is the wavenumber,

 

is the angular frequency of the wave, and   is the speed of light.

Here   is the amplitude of the field and

 

is the Jones vector in the x-y plane.

The wave is linearly polarized when the phase angles   are equal,

 .

This represents a wave polarized at an angle   with respect to the x axis. In that case, the Jones vector can be written

 .

The state vectors for linear polarization in x or y are special cases of this state vector.

If unit vectors are defined such that

 

and

 

then the polarization state can be written in the "x-y basis" as

 .

See alsoEdit

ReferencesEdit

  • Jackson, John D. (1998). Classical Electrodynamics (3rd ed.). Wiley. ISBN 0-471-30932-X. 
  1. ^ Shapira, Joseph; Shmuel Y. Miller (2007). CDMA radio with repeaters. Springer. p. 73. ISBN 0-387-26329-2. 

External linksEdit