Open main menu

Neon (10Ne) possesses three stable isotopes, 20Ne, 21Ne, and 22Ne. In addition, 17 radioactive isotopes have been discovered ranging from 15Ne to 34Ne, all short-lived. The longest-lived is 24Ne with a half-life of 3.38 minutes. All others are under a minute, most under a second. The least stable is 15Ne with a half-life of 7.7×10−22 s. See isotopes of carbon for notes about the measurement.

Main isotopes of neon (10Ne)
Iso­tope Decay
abun­dance half-life (t1/2) mode pro­duct
20Ne 90.48% stable
21Ne 0.27% stable
22Ne 9.25% stable
Standard atomic weight Ar, standard(Ne)
The abundances of the naturally occurring isotopes of neon

List of isotopesEdit

nuclide
symbol
Z(p) N(n)  
isotopic mass (u)[2]
 
half-life decay mode(s)[3] daughter
isotope(s)[n 1]
nuclear
spin and
parity
representative
isotopic
composition
(mole fraction)
range of natural
variation
(mole fraction)
15Ne[4] 10 5 15.04317(7) 7.7(3)×10−22 s
[0.59(23)–
2.522(60) MeV]
2p 13O (3/2–)
16Ne 10 6 16.025751(22) > 5.7×10−21 s
[122(37) keV]
2p 14O 0+
17Ne[n 2] 10 7 17.0177140(4) 109.2(6) ms β+, p (96.0%) 16O 1/2–
β+, α (2.7%) 13N
β+ (1.3%) 17F
18Ne 10 8 18.0057087(4) 1.66420(47) s β+ 18F 0+
2p (possibly 2He)[5] 16O
19Ne 10 9 19.00188090(17) 17.274(10) s β+ 19F 1/2+
20Ne 10 10 19.9924401762(17) Stable 0+ 0.9048(3) 0.8847–0.9051
21Ne 10 11 20.99384669(4) Stable 3/2+ 0.0027(1) 0.0027–0.0171
22Ne 10 12 21.991385110(19) Stable 0+ 0.0925(3) 0.0920–0.0996
23Ne 10 13 22.99446690(11) 37.140(28) s β 23Na 5/2+
24Ne 10 14 23.9936106(6) 3.38(2) min β 24Na 0+
25Ne 10 15 24.997810(30) 602(8) ms β 25Na 1/2+
26Ne 10 16 26.000516(20) 197(2) ms β (99.87%) 26Na 0+
β, n (0.13%) 25Na
27Ne 10 17 27.00757(10) 31.5(13) ms β (98.0%) 27Na (3/2+)
β, n (2.0%) 26Na
28Ne 10 18 28.01213(14) 20(1) ms β (84.3%) 28Na 0+
β, n (12.0%) 27Na
β, 2n (3.7%) 26Na
29Ne 10 19 29.01975(16) 14.7(4) ms β (68%) 29Na (3/2–)
β, n (28%) 28Na
β, 2n (4%) 27Na
30Ne 10 20 30.02499(27) 7.22(18) ms β 30Na (78.1%) 0+
β, n (13.0%) 29Na
β, 2n (8.9%) 28Na
31Ne 10 21 31.03347(29) 3.4(8) ms β 31Na (3/2−)
β, n 30Na
32Ne 10 22 32.03972(54)# 3.5(9) ms β 32Na 0+
β, n 31Na
34Ne 10 24 34.05673(55)# 1# ms [>1.5 µs] β 34Na 0+
  1. ^ Bold for stable isotopes
  2. ^ Has 2 halo protons

NotesEdit

  • The isotopic composition refers to that in air.
  • The precision of the isotope abundances and atomic mass is limited through variations. The given ranges should be applicable to any normal terrestrial material.
  • Geologically exceptional samples are known in which the isotopic composition lies outside the reported range. The uncertainty in the atomic mass may exceed the stated value for such specimens.
  • Commercially available materials may have been subjected to an undisclosed or inadvertent isotopic fractionation. Substantial deviations from the given mass and composition can occur.
  • Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
  • Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC, which use expanded uncertainties.

ReferencesEdit

  • Isotope masses from:
    • Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  • Isotopic compositions and standard atomic masses from:
  • Half-life, spin, and isomer data selected from the following sources. See editing notes on this article's talk page.
  1. ^ Meija, Juris; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry. 88 (3): 265–91. doi:10.1515/pac-2015-0305.
  2. ^ Wang, Meng; Audi, Georges; Kondev, Filip G.; Huang, Wen Jian; Naimi, Sarah; Xu, Xing (2017), "The AME2016 atomic mass evaluation (II). Tables, graphs, and references" (PDF), Chinese Physics C, 41 (3): 030003–1—030003–442, doi:10.1088/1674-1137/41/3/030003
  3. ^ Audi, Georges; Kondev, Filip G.; Wang, Meng; Huang, Wen Jia; Naimi, Sarah (2017), "The NUBASE2016 evaluation of nuclear properties" (PDF), Chinese Physics C, 41 (3): 030001–1—030001–138, Bibcode:2017ChPhC..41c0001A, doi:10.1088/1674-1137/41/3/030001
  4. ^ Wamers, F.; Marganiec, J.; Aksouh, F.; Aksyutina, Yu.; Álvarez-Pol, H.; Aumann, T.; Beceiro-Novo, S.; Boretzky, K.; Borge, M. J. G.; Chartier, M.; Chatillon, A.; Chulkov, L. V.; Cortina-Gil, D.; Emling, H.; Ershova, O.; Fraile, L. M.; Fynbo, H. O. U.; Galaviz, D.; Geissel, H.; Heil, M.; Hoffmann, D. H. H.; Johansson, H. T.; Jonson, B.; Karagiannis, C.; Kiselev, O. A.; Kratz, J. V.; Kulessa, R.; Kurz, N.; Langer, C.; Lantz, M.; Le Bleis, T.; Lemmon, R.; Litvinov, Yu. A.; Mahata, K.; Müntz, C.; Nilsson, T.; Nociforo, C.; Nyman, G.; Ott, W.; Panin, V.; Paschalis, S.; Perea, A.; Plag, R.; Reifarth, R.; Richter, A.; Rodriguez-Tajes, C.; Rossi, D.; Riisager, K.; Savran, D.; Schrieder, G.; Simon, H.; Stroth, J.; Sümmerer, K.; Tengblad, O.; Weick, H.; Wimmer, C.; Zhukov, M. V. (4 April 2014). "First Observation of the Unbound Nucleus $^{15}\mathrm{Ne}$" (PDF). Physical Review Letters. 112 (13): 132502. doi:10.1103/PhysRevLett.112.132502 – via APS.
  5. ^ "Physicists discover new kind of radioactivity". 24 October 2000. Archived from the original on 4 March 2016.