In nuclear physics, the chiral model, introduced by Feza Gürsey in 1960, is a phenomenological model describing effective interactions of mesons in the chiral limit (where the masses of the quarks go to zero), but without necessarily mentioning quarks at all. It is a nonlinear sigma model with the principal homogeneous space of a Lie group as its target manifold. When the model was originally introduced, this Lie group was the SU(N), where N is the number of quark flavors. The Riemannian metric of the target manifold is given by a positive constant multiplied by the Killing form acting upon the Maurer–Cartan form of SU(N).

Soliton scattering process for two solitons in the integrable chiral model. The plot shows the energy density of the system, and the maxima represent the solitons. They approach along one axis, collide to form a single lump, then scatter at 90 degrees.
Soliton scattering process for two solitons in the integrable chiral model. The plot shows the energy density of the system, and the maxima represent the solitons.[1][2]

The internal global symmetry of this model is , the left and right copies, respectively; where the left copy acts as the left action upon the target space, and the right copy acts as the right action. Phenomenologically, the left copy represents flavor rotations among the left-handed quarks, while the right copy describes rotations among the right-handed quarks, while these, L and R, are completely independent of each other. The axial pieces of these symmetries are spontaneously broken so that the corresponding scalar fields are the requisite Nambu−Goldstone bosons.

The model was later studied in the two-dimensional case as an integrable system, in particular an integrable field theory. Its integrability was shown by Faddeev and Reshetikhin in 1982 through the quantum inverse scattering method. The two-dimensional principal chiral model exhibits signatures of integrability such as a Lax pair/zero-curvature formulation, an infinite number of symmetries, and an underlying quantum group symmetry (in this case, Yangian symmetry).

This model admits topological solitons called skyrmions.

Departures from exact chiral symmetry are dealt with in chiral perturbation theory.

Mathematical formulation

edit

On a manifold (considered as the spacetime) M and a choice of compact Lie group G, the field content is a function  . This defines a related field  , a  -valued vector field (really, covector field) which is the Maurer–Cartan form. The principal chiral model is defined by the Lagrangian density   where   is a dimensionless coupling. In differential-geometric language, the field   is a section of a principal bundle   with fibres isomorphic to the principal homogeneous space for M (hence why this defines the principal chiral model).

Phenomenology

edit

An outline of the original, 2-flavor model

edit

The chiral model of Gürsey (1960; also see Gell-Mann and Lévy) is now appreciated to be an effective theory of QCD with two light quarks, u, and d. The QCD Lagrangian is approximately invariant under independent global flavor rotations of the left- and right-handed quark fields,

 

where τ denote the Pauli matrices in the flavor space and θL, θR are the corresponding rotation angles.

The corresponding symmetry group   is the chiral group, controlled by the six conserved currents

 

which can equally well be expressed in terms of the vector and axial-vector currents

 

The corresponding conserved charges generate the algebra of the chiral group,

 

with I=L,R, or, equivalently,

 

Application of these commutation relations to hadronic reactions dominated current algebra calculations in the early 1970s.

At the level of hadrons, pseudoscalar mesons, the ambit of the chiral model, the chiral   group is spontaneously broken down to  , by the QCD vacuum. That is, it is realized nonlinearly, in the Nambu–Goldstone mode: The QV annihilate the vacuum, but the QA do not! This is visualized nicely through a geometrical argument based on the fact that the Lie algebra of   is isomorphic to that of SO(4). The unbroken subgroup, realized in the linear Wigner–Weyl mode, is   which is locally isomorphic to SU(2) (V: isospin).

To construct a non-linear realization of SO(4), the representation describing four-dimensional rotations of a vector

 

for an infinitesimal rotation parametrized by six angles

 

is given by

 

where

 

The four real quantities (π, σ) define the smallest nontrivial chiral multiplet and represent the field content of the linear sigma model.

To switch from the above linear realization of SO(4) to the nonlinear one, we observe that, in fact, only three of the four components of (π, σ) are independent with respect to four-dimensional rotations. These three independent components correspond to coordinates on a hypersphere S3, where π and σ are subjected to the constraint

 

with F a (pion decay) constant of dimension mass.

Utilizing this to eliminate σ yields the following transformation properties of π under SO(4),

 

The nonlinear terms (shifting π) on the right-hand side of the second equation underlie the nonlinear realization of SO(4). The chiral group   is realized nonlinearly on the triplet of pions— which, however, still transform linearly under isospin   rotations parametrized through the angles   By contrast, the   represent the nonlinear "shifts" (spontaneous breaking).

Through the spinor map, these four-dimensional rotations of (π, σ) can also be conveniently written using 2×2 matrix notation by introducing the unitary matrix

 

and requiring the transformation properties of U under chiral rotations to be

 

where  

The transition to the nonlinear realization follows,

 

where   denotes the trace in the flavor space. This is a non-linear sigma model.

Terms involving   or   are not independent and can be brought to this form through partial integration. The constant F2/4 is chosen in such a way that the Lagrangian matches the usual free term for massless scalar fields when written in terms of the pions,

 

Alternate Parametrization

edit

An alternative, equivalent (Gürsey, 1960), parameterization

 

yields a simpler expression for U,

 

Note the reparameterized π transform under

 

so, then, manifestly identically to the above under isorotations, V; and similarly to the above, as

 

under the broken symmetries, A, the shifts. This simpler expression generalizes readily (Cronin, 1967) to N light quarks, so  

Integrability

edit

Integrable chiral model

edit

Introduced by Richard S. Ward,[3] the integrable chiral model or Ward model is described in terms of a matrix-valued field   and is given by the partial differential equation   It has a Lagrangian formulation with the expected kinetic term together with a term which resembles a Wess–Zumino–Witten term. It also has a formulation which is formally identical to the Bogomolny equations but with Lorentz signature. The relation between these formulations can be found in Dunajski (2010).

Many exact solutions are known.[4][5][6]

Two-dimensional principal chiral model

edit

Here the underlying manifold   is taken to be a Riemann surface, in particular the cylinder   or plane  , conventionally given real coordinates  , where on the cylinder   is a periodic coordinate. For application to string theory, this cylinder is the world sheet swept out by the closed string.[7]

Global symmetries

edit

The global symmetries act as internal symmetries on the group-valued field   as   and  . The corresponding conserved currents from Noether's theorem are   The equations of motion turn out to be equivalent to conservation of the currents,   The currents additionally satisfy the flatness condition,   and therefore the equations of motion can be formulated entirely in terms of the currents.

Lax formulation

edit

Consider the worldsheet in light-cone coordinates  . The components of the appropriate Lax matrix are   The requirement that the zero-curvature condition on   for all   is equivalent to the conservation of current and flatness of the current  , that is, the equations of motion from the principal chiral model (PCM).

See also

edit

References

edit
  1. ^ Ward, R.S (November 1995). "Nontrivial scattering of localized solitons in a (2+1)-dimensional integrable system". Physics Letters A. 208 (3): 203–208. arXiv:solv-int/9510004. doi:10.1016/0375-9601(95)00782-X. S2CID 123153627.
  2. ^ Dunajski, Maciej (2010). Solitons, instantons, and twistors. Oxford: Oxford University Press. p. 159. ISBN 9780198570639.
  3. ^ Ward, R. S. (February 1988). "Soliton solutions in an integrable chiral model in 2+1 dimensions". Journal of Mathematical Physics. 29 (2): 386–389. doi:10.1063/1.528078.
  4. ^ Ioannidou, T.; Zakrzewski, W. J. (May 1998). "Solutions of the modified chiral model in (2+1) dimensions". Journal of Mathematical Physics. 39 (5): 2693–2701. arXiv:hep-th/9802122. doi:10.1063/1.532414. S2CID 119529600.
  5. ^ Ioannidou, T. (July 1996). "Soliton solutions and nontrivial scattering in an integrable chiral model in (2+1) dimensions". Journal of Mathematical Physics. 37 (7): 3422–3441. arXiv:hep-th/9604126. doi:10.1063/1.531573. S2CID 15300406.
  6. ^ Dai, B.; Terng, C.-L. (1 January 2007). "Bäcklund transformations, Ward solitons, and unitons". Journal of Differential Geometry. 75 (1). arXiv:math/0405363. doi:10.4310/jdg/1175266254. S2CID 53477757.
  7. ^ Driezen, Sibylle (2021). "Modave Lectures on Classical Integrability in $2d$ Field Theories". arXiv:2112.14628 [hep-th].