Open main menu

Horndeski's theory

Horndeski's theory is the most general theory of gravity in four dimensions whose Lagrangian is constructed out of the metric tensor and a scalar field and leads to second order equations of motion[clarification needed]. The theory was first proposed by Gregory Horndeski in 1974[1] and has found numerous applications, particularly in the construction of cosmological models of Inflation and dark energy.[2] Horndeski's theory contains many theories of gravity, including General relativity, Brans-Dicke theory, Quintessence, Dilaton, Chameleon and covariant Galileon[3] as special cases.

ActionEdit

Horndeski's theory can be written in terms of an action as[4]

 

with the Lagrangian densities

 

 

 

 

Here   is Newton's constant,   represents the matter Lagrangian,   to   are generic functions of   and   ,   are the Ricci scalar and Einstein tensor,   is the Jordan frame metric, semicolon indicates covariant derivatives, commas indicate partial derivatives,   ,  and repeated indices are summed over following Einstein's convention.

Constraints on parametersEdit

Many of the free parameters of the theory have been constrained,   from the coupling of the scalar field to the top field and   via coupling to jets down to low coupling values with proton collisions at the ATLAS_experiment[5].   and  , are strongly constrained by the direct measurement of the speed of gravitational waves following GW170817.[6][7][8][9][10][11]

See alsoEdit

ReferencesEdit

  1. ^ Horndeski, Gregory Walter (1974-09-01). "Second-order scalar-tensor field equations in a four-dimensional space". International Journal of Theoretical Physics. 10 (6): 363–384. Bibcode:1974IJTP...10..363H. doi:10.1007/BF01807638. ISSN 0020-7748.
  2. ^ Clifton, Timothy; Ferreira, Pedro G.; Padilla, Antonio; Skordis, Constantinos (March 2012). "Modified Gravity and Cosmology". Physics Reports. 513 (1–3): 1–189. arXiv:1106.2476. Bibcode:2012PhR...513....1C. doi:10.1016/j.physrep.2012.01.001.
  3. ^ Deffayet, C.; Esposito-Farese, G.; Vikman, A. (2009-04-03). "Covariant Galileon". Physical Review D. 79 (8): 084003. arXiv:0901.1314. Bibcode:2009PhRvD..79h4003D. doi:10.1103/PhysRevD.79.084003. ISSN 1550-7998.
  4. ^ Kobayashi, Tsutomu; Yamaguchi, Masahide; Yokoyama, Jun'ichi (2011-09-01). "Generalized G-inflation: Inflation with the most general second-order field equations". Progress of Theoretical Physics. 126 (3): 511–529. arXiv:1105.5723. Bibcode:2011PThPh.126..511K. doi:10.1143/PTP.126.511. ISSN 0033-068X.
  5. ^ ATLAS Collaboration (2019-03-04). "Constraints on mediator-based dark matter and scalar dark energy models using   TeV   collision data collected by the ATLAS detector". arXiv:1903.01400. Cite journal requires |journal= (help)
  6. ^ Lombriser, Lucas; Taylor, Andy (2016-03-16). "Breaking a Dark Degeneracy with Gravitational Waves". Journal of Cosmology and Astroparticle Physics. 2016 (3): 031. arXiv:1509.08458. Bibcode:2016JCAP...03..031L. doi:10.1088/1475-7516/2016/03/031. ISSN 1475-7516.
  7. ^ Bettoni, Dario; Ezquiaga, Jose María; Hinterbichler, Kurt; Zumalacárregui, Miguel (2017-04-14). "Speed of Gravitational Waves and the Fate of Scalar-Tensor Gravity". Physical Review D. 95 (8): 084029. arXiv:1608.01982. Bibcode:2017PhRvD..95h4029B. doi:10.1103/PhysRevD.95.084029. ISSN 2470-0010.
  8. ^ Creminelli, Paolo; Vernizzi, Filippo (2017-10-16). "Dark Energy after GW170817". Physical Review Letters. 119 (25): 251302. arXiv:1710.05877. doi:10.1103/PhysRevLett.119.251302. PMID 29303308.
  9. ^ Sakstein, Jeremy; Jain, Bhuvnesh (2017-10-16). "Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories". Physical Review Letters. 119 (25): 251303. arXiv:1710.05893. doi:10.1103/PhysRevLett.119.251303. PMID 29303345.
  10. ^ Ezquiaga, Jose María; Zumalacárregui, Miguel (2017-12-18). "Dark Energy After GW170817: Dead Ends and the Road Ahead". Physical Review Letters. 119 (25): 251304. arXiv:1710.05901. Bibcode:2017PhRvL.119y1304E. doi:10.1103/PhysRevLett.119.251304. PMID 29303304.
  11. ^ Grossman, Lisa (2017-10-24). "What detecting gravitational waves means for the expansion of the universe". Science News. Retrieved 2017-11-08.