Open main menu

Wikipedia β

HELLP syndrome is a well-known variant of pre-eclampsia pregnancy complication. The syndrome was first described in 1982 as characterised by hemolysis (H), elevated liver enzymes (EL) and low platelet count (LP), to which the acronym HELLP refers.[1][2]

HELLP syndrome
Specialty Obstetrics

Symptoms usually start manifesting from the second trimester up to several days after birth and may be fatal to both the mother and the fetus. Diagnosis is challenging because it can appear in the absence of pre-eclampsia and some of the symptoms may not be evident. There is yet to be a consensus on the thresholds of the symptoms, thus many cases have been misdiagnosed.[3]

Contents

Signs and symptomsEdit

The first signs of HELLP start appearing midway through the third trimester, though the signs can appear in earlier and later stages.[4] Symptoms vary in severity and between individuals and are commonly mistaken with normal pregnancy symptoms, especially if they are not severe.[3][5]

HELLP syndrome patients suffer from general discomfort followed by severe epigastric pain or right upper abdominal quadrant pain, accompanied by nausea, vomiting, backache, anaemia, and hypertension. Some patients may also suffer from a headache and visual issues. These symptoms may also become more severe at night time.[6][7][8][9][10][11] As the condition progresses and worsens, a spontaneous hematoma occurs following the rupture of the liver capsule, which occurs more frequently in the right lobe. The presence of any combinations of these symptoms, subcapsular liver hematoma in particular, warrants an immediate check-up due to the high morbidity and mortality rates of this condition.[12][13][14]

Risk factorsEdit

Elevated body mass index (BMI) and metabolic disorders, as well as, antiphospholipid-antibody syndrome (APLS) significantly increase the risk of HELLP syndrome in all female patients. Females who have had or are related to a female with previous HELLP syndrome complications tend to be at a higher risk in all their subsequent pregnancies.[15][16][17]

The risk of suffering from HELLP syndrome is not conclusively associated with a specific genetic variation, but it is highly likely that a combination of genetic variations, such as FAS gene, VEGF gene, glucocorticoid receptor gene and the tol-like receptor gene, increase the risk.[16][18][19][20][21]

PathophysiologyEdit

HELLP syndrome is still not fully comprehended, therefore, its pathophysiology is still unclear and an exact cause is yet to be found. However, it shares a common pathophysiological mechanism, which is endothelial cell injury, with other conditions, such as acute renal failure and thrombotic thrombocytopenic purpura.[22][23] Increasing the understanding of HELLP syndrome’s pathophysiology will enhance diagnostic accuracy, especially in the early stages. This will lead to advancements in the prevention, management, and treatment of the condition, which will increase the likelihood of both maternal and fetal survival and recovery.[4][24]

Inflammatory and coagulation cascadesEdit

As a result of endothelial cell injury, a cascade of pathological reactions manifests and become increasingly severe and even fatal as signs and symptoms progress. Following endothelial injury, vasospasms and platelet activation occur alongside the decreased release of the endothelium-derived relaxing factor and increased the release of von Willebrand factor (vWF), leading to general activation of the coagulation cascade and inflammation. Placental components, such as inflammatory cytokines and syncytiotrophoblast particles interact with the maternal immune system and endothelial cells, further promoting coagulation and inflammation.[25][26] These interactions also elevate leukocyte numbers and interleukin concentrations, as well as increase complement activity.[27][28]

Low platelet countEdit

vWF degradation in HELLP syndrome is inhibited due to decreased levels of degrading proteins, leading to an increased exposure of platelets to vWF. As a result, thrombotic microangiopathies develop and lead to thrombocytopenia.[29]

HemolysisEdit

As a result of the high number of angiopathies, the erythrocytes fragment as they pass through the blood vessels with damaged endothelium and large fibrin networks, leading to macroangiopathic haemolytic anaemia. As a consequence of hemolysis, lactic acid dehydrogenase (LDH) and hemoglobin are released, with the latter binding to serum bilirubin or haptoglobin.[7][15]

Hepatic dysfunctionEdit

During the coagulation cascade, fibrin is deposited in the liver and leads to hepatic sinusoidal obstruction and vascular congestion, which increase intrahepatic pressure. Placenta-derived FasL (CD95L), which is toxic to human hepatocytes, leads to hepatocyte apoptosis and necrosis by inducing the expression of TNFα and results in the release of liver enzymes. Hepatic damages are worsened by the disrupted portal and total hepatic blood flow that result as a consequence of the microangiopathies. Collectively, all the hepatic changes and damages result in hepatic dysfunction in the form of hepatic necrosis, haemorrhages, and capsular rupture.[1][30][31][12][32][33][34][35]

DiagnosisEdit

DiagnosisEdit

Early and accurate diagnosis, which relies on laboratory tests and imaging exams, is essential for treatment and management and significantly reduces the morbidity rate. However, diagnosis of the syndrome is challenging, especially due to the variability in the signs and symptoms and the lack of consensus amongst healthcare professionals. Similarities to other conditions, as well as normal pregnancy features, commonly lead to misdiagnosed cases or more often, delayed diagnosis.[4][24]

There is a general consensus regarding the main three diagnostic criteria of HELLP syndrome, which include hepatic dysfunction, thrombocytopenia and microangiopathic haemolytic anaemia in patients suspected to have preeclampsia.

  • A blood smear will often exhibit abnormalities, such as schistocytes, bur cells, and helmet cells, which indicate erythrocyte damage.
  • Thrombocytopenia, which is the earliest coagulopathy present in all HELLP syndrome patients, is indicated by low platelet count (below 100 x 109 L-1) or by testing the levels of fibrin metabolites and antithrombin III.
  • Elevated serum levels of certain proteins, in particular, LDH, alanine transaminase (ALT) and aspartate transaminase (AST), are indicative of hepatic dysfunction. Extremely high serum levels of these proteins, specifically LDH levels > 1,400 IU/L, AST levels > 150 IU/L and ALT levels > 100 IU/L, significantly elevate the risk of maternal mortality.[1][2][22][7][30][8][36][37][38][39]

A number of other, but less conclusive, clinical diagnostic criteria are also used in diagnosis alongside the main clinical diagnostic criteria for HELLP syndrome.

Imaging tests, such as ultrasound, tomography or magnetic resonance imaging (MRI), are instrumental in the correct diagnosis of HELLP syndrome in patients with suspected liver dysfunction. Unurgent cases must undergo MRI, but laboratory tests, such as glucose determination, are more encouraged in mild cases of HELLP syndrome.[1][6][42]

ClassificationEdit

A classification system, which was developed in Mississippi, measures the severity of the syndrome using the lowest observed platelet count in the patients alongside the appearance of the other two main clinical criteria. Class I is the most severe, with a relatively high risk of morbidity and mortality, compared to the other two classes.

  • Class I HELLP syndrome is characterised by a platelet count below 50,000/µL.
  • Class II HELLP syndrome is characterised by a platelet count of 50,000-100,000/µL.
  • Class III HELLP syndrome is characterised by a platelet count of 100,000-150,000/µL. alongside the appearance of the other two main clinical criteria. Class I is the most severe, with increased risk of morbidity and mortality.[43]

Another classification system, introduced in Memphis, categorises HELLP syndrome based on its expression.

  • Partial expression of the condition is characterised by the manifestation of one or two of the main diagnostic criteria.
  • The complete expression of the condition is characterised by the manifestation of all three main diagnostic criteria.[44]

TreatmentEdit

The only current recommended and most effective treatment is delivery of the baby, as the signs and symptoms diminish and gradually disappear following the delivery of the placenta. Prompt delivery is the only viable option in cases with multiorgan dysfunction or multiorgan failure, haemorrhage and considerable danger to the fetus. Certain medications are also used to target and alleviate specific symptoms.[1][2][6][45][46]

A number of steroidal drugs, such as corticosteroids for fetal lung maturation, can increase maternal platelet count and improve neonatal health, however, the number and severity of their side effects are inconclusive and there is no consensus concerning whether their benefits are worthwhile.[8][47][48][49][50][51][52]

PrognosisEdit

With treatment, maternal mortality is about 1 percent, although complications such as placental abruption, acute renal failure, subcapsular liver hematoma, permanent liver damage, and retinal detachment occur in about 25% of women.[6] Perinatal mortality (stillbirths plus death in infancy) is between 73 and 119 per 1000 babies of woman with HELLP, while up to 40% are small for gestational age.[53] In general, however, factors such as gestational age are more important than the severity of HELLP in determining the outcome in the baby.[54]

EpidemiologyEdit

HELLP syndrome affects 10-20% of pre-eclampsia patients and is a complication in 0.5-0.9% of all pregnancies.[6][4][55] Caucasian women over 25 years of age comprise most of the diagnosed HELLP syndrome cases.[56] In 70% of cases before childbirth, the condition manifests in the third trimester, but 10% and 20% of the cases exhibit symptoms before and after the third trimester, respectively. Postpartum occurrences are also observed in 30% of all HELLP syndrome cases.[6][57]

HistoryEdit

HELLP syndrome was identified as a distinct clinical entity (as opposed to severe pre-eclampsia) by Dr. Louis Weinstein in 1982.[1] In a 2005 article, Weinstein wrote that the unexplained postpartum death of a woman who had hemolysis, abnormal liver function, thrombocytopenia, and hypoglycemia motivated him to review the medical literature and to compile information on similar women.[9] He noted that cases with features of HELLP had been reported as early as 1954.[9][58]

See alsoEdit

ReferencesEdit

  1. ^ a b c d e f Weinstein L (January 1982). "Syndrome of hemolysis, elevated liver enzymes, and low platelet count: a severe consequence of hypertension in pregnancy". Am J Obstet Gynecol. 142 (2): 159–67. PMID 7055180. 
  2. ^ a b c Haram K, Svendsen E, and Abildgaard U (February 2009). "The HELLP syndrome: clinical issues and management. A Review". BMC Pregnancy Childbirth. 9: 8. doi:10.1186/1471-2393-9-8. PMC 2654858 . PMID 19245695. 
  3. ^ a b Ertan AK, Wagner S, Hendrik HJ, Tanriverdi HA, Schmidt W (2003). "Clinical and biophysical aspects of HELLP-syndrome". J Perinat Med. 30 (6): 483–9. doi:10.1515/JPM.2002.076. PMID 12530105. 
  4. ^ a b c d Sibai BM, Taslimi MM, el-Nazer A, Amon E, Mabie BC, Ryan GM (September 1986). "Maternal-perinatal outcome associated with the syndrome of hemolysis, elevated liver enzymes, and low platelets in severe preeclampsia-eclampsia". J Perinat Med. 155 (3): 501–9. PMID 3529964. 
  5. ^ Visser W, Wallenburg HC (February 1995). "Temporising management of severe pre-eclampsia with and without the HELLP syndrome". Br J Obstet Gynaecol. 102 (2): 111–7. PMID 7756201. 
  6. ^ a b c d e f Sibai BM, Ramadan MK, Usta I, Salama M, Mercer BM, Friedman SA (October 1993). "Maternal morbidity and mortality in 442 pregnancies with hemolysis, elevated liver enzymes, and low platelets (HELLP syndrome)". Am J Obstet Gynecol. 169 (4): 1000–6. PMID 8238109. 
  7. ^ a b c Sibai BM (May 2004). "Diagnosis, controversies, and management of the syndrome of hemolysis, elevated liver enzymes, and low platelet count". Obstet Gynecol. 103 (5 Pt 1): 981–91. doi:10.1097/01.AOG.0000126245.35811.2a. PMID 15121574. 
  8. ^ a b c Sibai BM (February 1990). "he HELLP syndrome (hemolysis, elevated liver enzymes, and low platelets): much ado about nothing?". Am J Obstet Gynecol. 162 (2): 311–6. PMID 2309811. 
  9. ^ a b c Weinstein L (September 2005). "It has been a great ride: The history of HELLP syndrome". Am J Obstet Gynecol. 193 (3 Pt 1): 860–3. doi:10.1016/j.ajog.2005.06.058. PMID 16150288. 
  10. ^ Aarnoudse JG, Houthoff HJ, Weits J, Vellenga E, Huisjes HJ (February 1986). "A syndrome of liver damage and intravascular coagulation in the last trimester of normotensive pregnancy. A clinical and histopathological study". Br J Obstet Gynaecol. 93 (2): 145–55. PMID 3511956. 
  11. ^ Araujo AC, Leao MD, Nobrega MH, Bezerra PF, Pereira FV, Dantas EM, Azevedo GD, Jeronimo SM (July 2006). "Characteristics and treatment of hepatic rupture caused by HELLP syndrome". Am J Obstet Gynecol. 1995 (1): 129–33. doi:10.1016/j.ajog.2006.01.016. PMID 16579935. 
  12. ^ a b Strand S, Strand D, Seufert R, Mann A, Lotz J, Blessing M, Lahn M, Wunsch A, Broering DC, Hahn U, Grischke EM, Rogiers X, Otto G, Gores GJ, Galle PR (March 2004). "Placenta-derived CD95 ligand causes liver damage in hemolysis, elevated liver enzymes, and low platelet count syndrome". Gastroenterology. 126 (3): 849–58. PMID 14988839. 
  13. ^ Rinehart BK, Terrone DA, Magann EF, Martin RW, May WL, Martin JN Jr (March 1996). "Preeclampsia-associated hepatic hemorrhage and rupture: mode of management related to maternal and perinatal outcome". Obstet Gynecol Surv. 54 (3): 196–202. PMID 10071839. 
  14. ^ Wicke C, Pereira PL, Neeser E, Flesch I, Rodegerdts EA, Becker HD (January 2004). "Subcapsular liver hematoma in HELLP syndrome: Evaluation of diagnostic and therapeutic options--a unicenter study". Am J Obstet Gynecol. 190 (1): 106–12. doi:10.1016/j.ajog.2003.08.029. PMID 14749644. 
  15. ^ a b Lachmeijer AM, Arngrimsson R, Bastiaans EJ, Frigge ML, Pals G, Sigurdardottir S, Stefansson H, Palsson B, Nicolae D, Kong A, Aarnoudse JG, Gulcher JR, Dekker GA, ten Kate LP, Stefansson K (October 2001). "A genome-wide scan for preeclampsia in the Netherlands". Eur J Hum Genet. 9 (10): 758–64. doi:10.1038/sj.ejhg.5200706. PMID 11781687. 
  16. ^ a b Habli M, Eftekhari N, Wiebracht E, Bombrys A, Khabbaz M, How H, Sibai B (October 2009). "Long-term maternal and subsequent pregnancy outcomes 5 years after hemolysis, elevated liver enzymes, and low platelets (HELLP) syndrome". Am J Obstet Gynecol. 201 (4): 385 e1–5. doi:10.1016/j.ajog.2009.06.033. PMID 19716544. 
  17. ^ Hupuczi P, Rigo B, Sziller I, Szabo G, Szigeti Z, Papp Z (2006). "Follow-up analysis of pregnancies complicated by HELLP syndrome". Fetal Diagn Ther. 21 (6): 519–22. doi:10.1159/000095665. PMID 16969007. 
  18. ^ Sziller I, Hupuczi P, Normand N, Halmos A, Papp Z, Witkin SS (March 2009). "Fas (TNFRSF6) gene polymorphism in pregnant women with hemolysis, elevated liver enzymes, and low platelets and in their neonates". Obstet Gynecol. 107 (3): 582–7. doi:10.1097/01.AOG.0000195824.51919.81. PMID 16507928. 
  19. ^ Nagy B, Savli H, Molvarec A, Varkonyi T, Rigo B, Hupuczi P, Rigo J Jr (2006). "Vascular endothelial growth factor (VEGF) polymorphisms in HELLP syndrome patients determined by quantitative real-time PCR and melting curve analyses". Clin Chim Acta. 389 (1-2): 126–31. doi:10.1016/j.cca.2007.12.003. PMID 18167313. 
  20. ^ Bertalan R, Patocs A, Nagy B, Derzsy Z, Gullai N, Szappanos A (July 2009). "Overrepresentation of BclI polymorphism of the glucocorticoid receptor gene in pregnant women with HELLP syndrome". Clin Chim Acta. 405 (1-2): 148–52. doi:10.1016/j.cca.2009.03.046. PMID 19336230. 
  21. ^ van Rijn BB, Franx A, Steegers EA, de Groot CJ, Bertina RM, Pasterkamp G (April 2008). "Maternal TLR4 and NOD2 gene variants, pro-inflammatory phenotype and susceptibility to early-onset preeclampsia and HELLP syndrome". PLoS One. 3 (4): e1865. doi:10.1371/journal.pone.0001865. PMC 2270909 . PMID 18382655. 
  22. ^ a b Geary M (August 1997). "The HELLP syndrome". Br J Obstet Gynaecol. 104 (8): 877–91. PMID 9255078. 
  23. ^ Sibai BM, Kustermann L, Velasco J (July 1994). "DCurrent understanding of severe preeclampsia, pregnancy-associated hemolytic uremic syndrome, thrombotic thrombocytopenic purpura, hemolysis, elevated liver enzymes, and low platelet syndrome, and postpartum acute renal failure: different clinical syndromes or just different names?". Curr Opin Nephrol Hypertens. 3 (4): 436–45. PMID 8076148. 
  24. ^ a b Benedetto C, Marozio L, Tancredi A, Picardo E, Nardolillo P, Tavella AM, Salton L (2011). "Biochemistry of HELLP syndrome". Adv Clin Chem. 53: 85–104. PMID 21404915. 
  25. ^ Gardiner C, Tannetta DS, Simms CA, Harrison P, Redman CW, Sargent IL (2011). "Syncytiotrophoblast microvesicles released from pre-eclampsia placentae exhibit increased tissue factor activity". PLoS One. 6 (10): e26313. doi:10.1371/journal.pone.0026313. PMC 3194796 . PMID 22022598. 
  26. ^ Hulstein JJ, van Runnard Heimel PJ, Franx A, Lenting PJ, Bruinse HW, Silence K, de Groot PG, Fijnheer R (December 2006). "Acute activation of the endothelium results in increased levels of active von Willebrand factor in hemolysis, elevated liver enzymes and low platelets (HELLP) syndrome". PLoS One. 4 (12): 2569–75. doi:10.1111/j.1538-7836.2006.02205.x. PMID 16968329. 
  27. ^ Terrone DA, Rinehart BK, May WL, Moore A, Magann EF, Martin JN Jr (August 2000). "SLeukocytosis is proportional to HELLP syndrome severity: evidence for an inflammatory form of preeclampsia". South Med J. 93 (8): 768–71. PMID 10963506. 
  28. ^ Haeger M, Unander M, Norder-Hansson B, Tylman M, Bengtsson A (January 1992). "Complement, neutrophil, and macrophage activation in women with severe preeclampsia and the syndrome of hemolysis, elevated liver enzymes, and low platelet count". Obstet Gynecol. 79 (1): 19–26. PMID 1727579. 
  29. ^ Lattuada A, Rossi E, Calzarossa C, Candolfi R, Mannucci PM (September 2003). "Mild to moderate reduction of a von Willebrand factor cleaving protease (ADAMTS-13) in pregnant women with HELLP microangiopathic syndrome". Haematologica. 88 (9): 1029–34. PMID 12969811. 
  30. ^ a b Norwitz ER, Hsu CD, Repke JT (June 2002). "Acute complications of preeclampsia". Clin Obstet Gynecol. 45 (2): 308–29. PMID 12048392. 
  31. ^ Stevenson JT, Graham DJ (September 1995). "Hepatic hemorrhage and the HELLP syndrome: a surgeon's perspective". Am Surg. 61 (9): 756–60. PMID 7661469. 
  32. ^ Halim A, Kanayama N, El Maradny E, Maehara K, Takahashi A, Nosaka K, Fukuo S, Amamiya A, Kobayashi T, Terao T (1996). "Immunohistological study in cases of HELLP syndrome (hemolysis, elevated liver enzymes and low platelets) and acute fatty liver of pregnancy". Gynecol Obstet Invest. 41 (2): 106–12. doi:10.1159/000292053. PMID 8838970. 
  33. ^ Tsokos M, Longauer F, Kardosova V, Gavel A, Anders S, Schulz F (February 2002). "Maternal death in pregnancy from HELLP syndrome. A report of three medico-legal autopsy cases with special reference to distinctive histopathological alterations". Int J Legal Med. 116 (1): 50–3. PMID 11924711. 
  34. ^ Koenig M, Roy M, Baccot S, Cuilleron M, de Filippis JP, Cathebras P (April 2005). "Thrombotic microangiopathy with liver, gut, and bone infarction (catastrophic antiphospholipid syndrome) associated with HELLP syndrome". Clin Rheumatol. 24 (2): 166–8. doi:10.1007/s10067-004-1017-1. PMID 15592692. 
  35. ^ Kawabata I, Nakai A, Takeshita T (August 2006). "Prediction of HELLP syndrome with assessment of maternal dual hepatic blood supply by using Doppler ultrasound". Arch Gynecol Obstet. 274 (5): 303–9. doi:10.1007/s00404-006-0175-6. PMID 16680464. 
  36. ^ Martin JN Jr, Rinehart BK, May WL, Magann EF, Terrone DA, Blake PG (June 1999). "The spectrum of severe preeclampsia: comparative analysis by HELLP (hemolysis, elevated liver enzyme levels, and low platelet count) syndrome classification". Am J Obstet Gynecol. 180 (6 Pt 1): 1373–84. PMID 10368474. 
  37. ^ Martin JN Jr, Rose CH, Briery CM (October 2006). "Understanding and managing HELLP syndrome: the integral role of aggressive glucocorticoids for mother and child". Am J Obstet Gynecol. 195 (4): 914–34. doi:10.1016/j.ajog.2005.08.044. PMID 16631593. 
  38. ^ Martin JN Jr, Blake PG, Perry KG, Jr, McCaul JF, Hess LW, Martin RW (June 1992). "The natural history of HELLP syndrome: patterns of disease progression and regression". Am J Obstet Gynecol. 164 (6 Pt 1): 1500–9; discussion 1509–13. PMID 2048596. 
  39. ^ Catanzarite VA, Steinberg SM, Mosley CA, Landers CF, Cousins LM, Schneider JM (September 1995). "Severe preeclampsia with fulminant and extreme elevation of aspartate aminotransferase and lactate dehydrogenase levels: high risk for maternal death". Am J Perinatol. 12 (5): 310–3. doi:10.1055/s-2007-994482. PMID 8540929. 
  40. ^ Roberts JM, Taylor RN, Musci TJ, Rodgers GM, Hubel CA, McLaughlin MK (November 1989). "Preeclampsia: an endothelial cell disorder". Am J Obstet Gynecol. 161 (5): 1200–4. PMID 2589440. 
  41. ^ Sibai BM (July 1996). "Treatment of hypertension in pregnant women". N Engl J Med. 335 (45): 257–65. doi:10.1056/NEJM199607253350407. PMID 8657243. 
  42. ^ Weinstein L (November 1985). "Preeclampsia/eclampsia with hemolysis, elevated liver enzymes, and thrombocytopenia". Obstet Gynecol. 66 (5): 657–60. PMID 4058824. 
  43. ^ Martin JN Jr, Blake PG, Lowry SL, Perry KG Jr, Files JC, Morrison JC (November 1990). "Pregnancy complicated by preeclampsia-eclampsia with the syndrome of hemolysis, elevated liver enzymes, and low platelet count: how rapid is postpartum recovery?". Obstet Gynecol. 76 (5 Pt 1): 737–41. PMID 2216215. 
  44. ^ Audibert F, Friedman SA, Frangieh AY, Sibai BM (August 1996). "Clinical utility of strict diagnostic criteria for the HELLP (hemolysis, elevated liver enzymes, and low platelets) syndrome". Am J Obstet Gynecol. 175 (2): 460–4. PMID 8765269. 
  45. ^ Haddad B, Barton JR, Livingston JC, Chahine R, Sibai BM (August 2000). "Risk factors for adverse maternal outcomes among women with HELLP (hemolysis, elevated liver enzymes, and low platelet count) syndrome". Am J Obstet Gynecol. 183 (2): 444–8. doi:10.1067/mob.2000.105915. PMID 10942484. 
  46. ^ Rath W, Loos W, Kuhn W, Graeff H (August 1990). "The importance of early laboratory screening methods for maternal and fetal outcome in cases of HELLP syndrome". Eur J Obstet Gynecol Reprod Biol. 36 (1-2): 43–51. PMID 2365128. 
  47. ^ Woudstra DM, Chandra S, Hofmeyr GJ, Dowswell T (September 2008). "Corticosteroids for HELLP (hemolysis, elevated liver enzymes, low platelets) syndrome in pregnancy". Cochrane Database Syst Rev (9): CD008148. doi:10.1002/14651858.CD008148.pub2. PMC 4171033 . PMID 10942484. 
  48. ^ Tompkins MJ, Thiagarajah S (August 1999). "HELLP (hemolysis, elevated liver enzymes, and low platelet count) syndrome: the benefit of corticosteroids". Am J Obstet Gynecol. 181 (2): 304–9. PMID 10454673. 
  49. ^ O'Brien JM, Milligan DA, Barton JR (October 2000). "Impact of high-dose corticosteroid therapy for patients with HELLP (hemolysis, elevated liver enzymes, and low platelet count) syndrome". Am J Obstet Gynecol. 183 (4): 921–4. doi:10.1067/mob.2000.108869. PMID 11035338. 
  50. ^ Magann EF, Bass D, Chauhan SP, Sullivan DL, Martin RW, Martin JN Jr (October 1994). "ntepartum corticosteroids: disease stabilization in patients with the syndrome of hemolysis, elevated liver enzymes, and low platelets (HELLP)". Am J Obstet Gynecol. 171 (4): 1148–53. PMID 7943088. 
  51. ^ Amorim MM, Santos LC, Faundes A (May 1999). "Corticosteroid therapy for prevention of respiratory distress syndrome in severe preeclampsia". Am J Obstet Gynecol. 180 (5): 1283–8. PMID 10329891. 
  52. ^ Aloizos S, Seretis C, Liakos N, Aravosita P, Mystakelli C, Kanna E, Gourgiotis (May 2013). "HELLP syndrome: understanding and management of a pregnancy-specific disease". J Obstet Gynaecol. 33 (4): 331–7. doi:10.3109/01443615.2013.775231. PMID 23654309. 
  53. ^ Belfort, Michael A.; Steven Thornton; George R. Saade (2002). Hypertension in Pregnancy. CRC Press. pp. 159–60. ISBN 9780824708276. Retrieved 2012-04-13. 
  54. ^ Stevenson, David Kendal; William E. Benītz (2003). Fetal and Neonatal Brain Injury. Cambridge University Press. p. 260. ISBN 9780521806916. Retrieved 2012-04-13. 
  55. ^ Santema JG, Koppelaar I, Wallenburg HC (January 1995). "Hypertensive disorders in twin pregnancy". Eur J Obstet Gynecol Reprod Biol. 58 (1): 13–9. PMID 7758654. 
  56. ^ Padden MO (September 1999). "HELLP syndrome: recognition and perinatal management". Am Fam Physician. 60 (3): 829–36, 839. doi:10.1515/JPM.2002.076. PMID 10498110. 
  57. ^ Barton JR, Sibai BM (December 2004). "Diagnosis and management of hemolysis, elevated liver enzymes, and low platelets syndrome". Clin Perinatol. 31 (4): 807–33. doi:10.1016/j.clp.2004.06.008. PMID 15519429. 
  58. ^ Pritchard JA, Weisman R Jr, Ratnoff OD, Vosburgh GJ (Jan 1954). "Intravascular hemolysis, thrombocytopenia and other hematologic abnormalities associated with severe toxemia of pregnancy". N Engl J Med. 250 (3): 89–98. doi:10.1056/NEJM195401212500301. PMID 13119851. 

External linksEdit