Edward Neuman (born September 19, 1943[1] in Rydułtowy, Silesian Voivodeship, Poland)[2] is a Polish-American mathematician, currently a professor emeritus of mathematics at Southern Illinois University Carbondale.[3]

Edward Neuman
Born
Edward Jerzy Neuman

September 19, 1943
NationalityPolish-American
Alma materUniversity of Wrocław
Known forNeuman–Sándor mean and Neuman means
Scientific career
FieldsMathematician and mathematics professor
InstitutionsSouthern Illinois University
Doctoral advisorwmpl:Stefan Paszkowski

Academic career

edit

Neuman received his Ph.D. in mathematics from the University of Wrocław in 1972[4] under the supervision of wmpl:Stefan Paszkowski.[5] His dissertation was entitled "Projections in Uniform Polynomial Approximation." He held positions at the Institute of Mathematics and the Institute of Computer Sciences of the University of Wroclaw,[6] and the Institute of Applied Mathematics Bonn[7] in Germany. In 1986, he took a permanent faculty position at Southern Illinois University.

Contributions

edit

Neuman has contributed 130 journal articles[8] in computational mathematics and mathematical inequalities such as the Ky Fan inequality, on bivariate means,[9] and mathematical approximations and expansions. Neuman also developed software for computing with spline functions[10] and wrote several tutorials for the MATLAB programing software.[11] Among the mathematical concepts named after Edward Neuman are Neuman–Sándor Mean and Neuman Means, which are useful tools for advancing the theory of special functions including Jacobi elliptic functions:

Awards and honors

edit

Neuman was named the Outstanding Teacher in 2001 in the College of Science at Southern Illinois University Carbondale. Neuman worked as a Validator[1] for the original release and publication of the National Institute of Standards and Technology (NIST) Handbook and Digital Library of Mathematical Functions. He serves on the Editorial Boards of the Journal of Inequalities in Pure and Applied Mathematics,[15] the Journal of Inequalities and Special Functions,[16] and Journal of Mathematical Inequalities.[17]

Selected works

edit

The most frequently cited works by Neuman include:

  • "On the Schwab–Borchardt mean" Math Pannon 14(2) (2003), 253–266.[18]
  • "On the Schwab–Borchardt mean II" Math Pannon 17(1) (2006), 49–59.[19]
  • "The weighted logarithmic mean" J. Math. Anal. Appl. 188 (1994), 885–900.[20]

See also

edit

References

edit
  1. ^ a b "DLMF: Edward Neuman".
  2. ^ www.sam3.pl, CONCEPT Intermedia. "Portal".{{cite web}}: CS1 maint: numeric names: authors list (link)
  3. ^ "Edward Neuman | Mathematics | SIU".
  4. ^ "Biographical".
  5. ^ "Stefan Paszkowski – The Mathematics Genealogy Project".
  6. ^ "Faculty of Mathematics and Computer Science - University of Wrocław".
  7. ^ "Institute for applied mathematics: Home".
  8. ^ "Edward Neuman – Google Scholar Citations".
  9. ^ Chen, Shu-Bo; He, Zai-Yin; Chu, Yu-Ming; Song, Ying-Qing; Tao, Xiao-Jing (25 September 2014). "Note on certain inequalities for Neuman means". Journal of Inequalities and Applications. 2014 (1): 370. arXiv:1405.4387. doi:10.1186/1029-242x-2014-370. S2CID 55843711.
  10. ^ "Spline Functions – from Wolfram Library Archive".
  11. ^ "Tutorials".
  12. ^ Huang, Hua-Ying; Wang, Nan; Long, Bo-Yong (8 January 2016). "Optimal bounds for Neuman–Sándor mean in terms of the geometric convex combination of two Seiffert means". Journal of Inequalities and Applications. 2016 (1). doi:10.1186/s13660-015-0955-2.
  13. ^ "Ele-Math – Journal of Mathematical Inequalities: Sharp Lehmer mean bounds for Neuman means with applications".
  14. ^ "Ele-Math – Journal of Mathematical Inequalities: Sharp inequalities involving Neuman means of the second kind".
  15. ^ "JIPAM – Journal of Inequalities in Pure and Applied Mathematics".
  16. ^ "Journal of Inequalities and Special Functions". Archived from the original on 2015-10-25. Retrieved 2016-10-11.
  17. ^ "Ele-Math – Journal of Mathematical Inequalities: Editorial board".
  18. ^ "On the Schwab–Borchardt mean" (PDF). Math Pannon.
  19. ^ On the Schwab–Borchardt mean II
  20. ^ Neuman, E. (1 December 1994). "The Weighted Logarithmic Mean". Journal of Mathematical Analysis and Applications. 188 (3): 885–900. doi:10.1006/jmaa.1994.1469.
edit