Unichiral refers to a substance, sample, or compound primarily comprising of a single enantiomer.[1] It is a significant term in stereochemistry, the chemistry branch focusing on molecules' spatial atomic arrangements. Central to this field is chirality, a molecular property indicating non-superimposability with its mirror image.[2]

Overview edit

The term "unichiral" (derived from the Latin "unus," meaning "one”) describes substances that are configurationally homogeneous, composed exclusively of chiral molecules of the same configuration. This differs from racemic mixtures, which contain equal amounts of both enantiomers. "Unichiral" is frequently used in contexts involving the preparation, utilization, or analysis of chiral molecules, especially in pharmaceuticals, where enantiomeric purity critically affects drug efficacy and safety.[3]

Historical context and usage edit

Homochiral," coined by Lord Kelvin in the late 19th century, originally referred to molecules or molecular substituents with same sense of chirality.[4] Over time, "homochiral" has been misapplied to describe enantiomerically pure substances. The inappropriate usage of "homochiral" was discouraged by the IUPAC recommendation for stereochemical terminology,[5] and by many in the scientific community.[6] In response, Joseph Gal proposed "unichiral" for more accurately defining single-enantiomer substances.[4][7][8] "Unichiral" has since been used in various fields including pharmaceutical research,[9][10][11][12] chiral drug analysis,[13][14][15][16][17][18] biological and drug therapy,[3][19] [20][21] material science,[22] and chirality science.[23][24][25][26]

Significance in stereochemistry edit

In stereochemistry, "unichiral" is important for its precise description of substances with a single-enantiomeric composition. This accuracy is crucial for clear communication and understanding in the scientific community, particularly in drug development and molecular analysis. It helps differentiate substances based on enantiomeric composition, a key factor in numerous chemical and biological processes.[1][3][26]

Advantages and uniqueness edit

The introduction of "unichiral" fills a lexical gap in stereochemistry, offering a term that conveys enantiomeric homogeneity without implying absolute purity. Its adoption marks progress in resolving ambiguities associated with previous terminology and contributes to the ongoing evolution of stereochemical nomenclature.

See also edit

References edit

  1. ^ a b Gal, Joseph; Lindner, Wolfgang (2006). "Chiral drugs from a historical point of view". In Francotte, Eric (ed.). Chirality in drug research. Germany: Wiley-VCH Verlag GmbH & Co. pp. 3–26. ISBN 3-527-31076-2.
  2. ^ Eliel, E.L; Wilen, S.H; Mander, L.N. (in part) (1994). Stereochemistry of Organic Compounds. New York: Wiley-Interscience.
  3. ^ a b c Gurjar, M., K (2007). "The future lies in chiral purity: a perspective". Journal of the Indian Medical Association. 105 (4): 177–178. PMID 17822185.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. ^ a b Bentley, Ronald (2010). "Chiral: A confusing etymology". Chirality. 22 (1): 1–2. doi:10.1002/chir.20699. ISSN 0899-0042. PMID 19229956.
  5. ^ Moss, G. P. (1996-01-01). "Basic terminology of stereochemistry (IUPAC Recommendations 1996)". Pure and Applied Chemistry. 68 (12): 2193–2222. doi:10.1351/pac199668122193. ISSN 1365-3075.
  6. ^ Eliel, E.L; Wilen, S. H (1990). "(1990). "Misuse of homochiral"". Chem. Eng. News. 10 (9): 2.
  7. ^ Gal, Joseph (1998). "Problems of stereochemical nomenclature and terminology. The homochiral controversy. Its nature, origins, and a proposed solution". Enantiomer (3): 263–273.
  8. ^ Schurig, Volker (2013), Schurig, Volker (ed.), "Terms for the Quantitation of a Mixture of Stereoisomers", Differentiation of Enantiomers I, Topics in Current Chemistry, vol. 340, Cham: Springer International Publishing, pp. 21–40, doi:10.1007/128_2013_454, ISBN 978-3-319-03238-2, PMID 23824527, retrieved 2023-12-13
  9. ^ Hadžidedić, š.; Uzunović, A.; Šehić Jazić, S.; Kocova El-Arini, S. (2014). "The impact of chirality on the development of robust and stable tablet formulation of (S-) amlodipine besylate". Pharmaceutical Development and Technology. 19 (8): 930–941. doi:10.3109/10837450.2013.840847. ISSN 1083-7450. PMID 24099553. S2CID 24461430.
  10. ^ Bun Ching, Chi; Zhang, Jianhua; Sui, Jianjun; Ning Chen, Wei (2010). "Proteomics profile of cellular response to chiral drugs: Prospects for pharmaceutical applications". Proteomics. 10 (4): 888–893. doi:10.1002/pmic.200900094. ISSN 1615-9853. PMID 19953539. S2CID 46301897.
  11. ^ Viedma, Cristóbal; Coquerel, Gérard; Cintas, Pedro (2015), "Crystallization of Chiral Molecules", Handbook of Crystal Growth, Elsevier, pp. 951–1002, doi:10.1016/b978-0-444-56369-9.00022-8, ISBN 978-0-444-56369-9, retrieved 2023-12-11
  12. ^ Kandula, Jony Susanna; Rayala, VVS Prasanna Kumari; Pullapanthula, Radhakrishnanand (2023). "Chirality: An inescapable concept for the pharmaceutical, bio-pharmaceutical, food, and cosmetic industries". Separation Science Plus. 6 (4). doi:10.1002/sscp.202200131. ISSN 2573-1815. S2CID 256718775.
  13. ^ Schulte, M (2000). "Chiral derivatization chromatography". In Subramanian., G (ed.). Chiral Separation Techniques: A Practical Approach, ISBN: 3-527-29875-4. Wiley-VCH Verlag GmbH. pp. 185–202.
  14. ^ Sui, Jianjun; Zhang, Jianhua; Ching, Chi Bun; Chen, Wei Ning (2009). "Expanding proteomics into the analysis of chiral drugs". Molecular BioSystems. 5 (6): 603–608. doi:10.1039/b903858b. ISSN 1742-206X. PMID 19462017.
  15. ^ Walba, David M.; Eshdat, Lior; Korblova, Eva; Shao, Renfan; Clark, Noel A. (2007-02-19). "A General Method for Measurement of Enantiomeric Excess by Using Electrooptics in Ferroelectric Liquid Crystals". Angewandte Chemie (in German). 119 (9): 1495–1497. Bibcode:2007AngCh.119.1495W. doi:10.1002/ange.200603692. ISSN 0044-8249.
  16. ^ Golkiewicz, W; Polak, B (2012). "Indirect methods for the chromatographic resolution of drug enantiomers". In Krzysztof, Jozwiak; Lough, W. J; Wainer, I. W (eds.). in Drug Stereochemistry: Analytical Methods and Pharmacology, Third Edition edited by ,2012 (3 ed.). Informa Healthcare, London. ISBN 9781420092387.
  17. ^ Pasutto, Franco M. (1992). "Mirror Images: The Analysis of Pharmaceutical Enantiomers". The Journal of Clinical Pharmacology. 32 (10): 917–924. doi:10.1002/j.1552-4604.1992.tb04639.x. ISSN 0091-2700. PMID 1447399. S2CID 34481858.
  18. ^ Rizzi, Andreas; Schuh, Rudolf; Brückner, Andrea; Cvitkovich, Beate; Kremser, Leopold; Jordis, Ulrich; Fröhlich, Johannes; Küenburg, Bernhard; Czollner, Laszlo (1999). "Enantiomeric resolution of galanthamine and related drugs used in anti-Alzheimer therapy by means of capillary zone electrophoresis employing derivatized cyclodextrin selectors". Journal of Chromatography B: Biomedical Sciences and Applications. 730 (2): 167–175. doi:10.1016/S0378-4347(99)00186-3. PMID 10448951.
  19. ^ Boyarkin, Oleg; Burger, Stefan; Franke, Thomas; Fraunholz, Thomas; Hoppe, Ronald H. W.; Kirschler, Simon; Lindner, Kevin; Peter, Malte A.; Strobl, Florian (2017), Bothe, Dieter; Reusken, Arnold (eds.), "Transport at Interfaces in Lipid Membranes and Enantiomer Separation", Transport Processes at Fluidic Interfaces, Cham: Springer International Publishing, pp. 489–530, doi:10.1007/978-3-319-56602-3_17, ISBN 978-3-319-56601-6, retrieved 2023-12-13
  20. ^ Gulati, Vinay (2007). "Differential properties of enantiomers of commercially available racemates". Journal of the Indian Medical Association. 105 (4): 173–174, 176. ISSN 0019-5847. PMID 17822184.
  21. ^ Dasbiswas, Arup; Dasbiswas, Debasri (2010). "Chirally pure S-metoprolol--place in therapy". Indian Heart Journal. 62 (2): 143–145. ISSN 0019-4832. PMID 21180306.
  22. ^ Koe, Julian; Fujiki, Michiya (2017), "Polysilanes", Organosilicon Compounds, Elsevier, pp. 219–300, doi:10.1016/b978-0-12-814213-4.00006-x, ISBN 978-0-12-814213-4, retrieved 2023-12-15
  23. ^ Cintas, Pedro; Viedma, Cristóbal (2012). "On the Physical Basis of Asymmetry and Homochirality". Chirality. 24 (11): 894–908. doi:10.1002/chir.22028. ISSN 0899-0042. PMID 22678980.
  24. ^ Pividori, M.; Dri, C.; Orselli, M. E.; Berti, F.; Peressi, M.; Comelli, G. (2016). "Spontaneous symmetry breaking on ordered, racemic monolayers of achiral theophylline: formation of unichiral stripes on Au(111)". Nanoscale. 8 (46): 19302–19313. doi:10.1039/C6NR05301G. ISSN 2040-3364. PMID 27834424.
  25. ^ Martínez, R. Fernando; Cuccia, Louis A.; Viedma, Cristóbal; Cintas, Pedro (2022). "On the Origin of Sugar Handedness: Facts, Hypotheses and Missing Links-A Review". Origins of Life and Evolution of Biospheres. 52 (1–3): 21–56. Bibcode:2022OLEB...52...21M. doi:10.1007/s11084-022-09624-9. ISSN 0169-6149. PMID 35796896. S2CID 250337689.
  26. ^ a b Peluso, Paola; Chankvetadze, Bezhan (2022-08-24). "Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers". Chemical Reviews. 122 (16): 13235–13400. doi:10.1021/acs.chemrev.1c00846. ISSN 0009-2665. PMID 35917234. S2CID 251254961.