Babenko–Beckner inequality

In mathematics, the Babenko–Beckner inequality (after Konstantin I. Babenko [ru] and William E. Beckner) is a sharpened form of the Hausdorff–Young inequality having applications to uncertainty principles in the Fourier analysis of Lp spaces. The (qp)-norm of the n-dimensional Fourier transform is defined to be[1]

In 1961, Babenko[2] found this norm for even integer values of q. Finally, in 1975, using Hermite functions as eigenfunctions of the Fourier transform, Beckner[3] proved that the value of this norm for all is

Thus we have the Babenko–Beckner inequality that

To write this out explicitly, (in the case of one dimension,) if the Fourier transform is normalized so that

then we have

or more simply

Main ideas of proof edit

Throughout this sketch of a proof, let

 

(Except for q, we will more or less follow the notation of Beckner.)

The two-point lemma edit

Let   be the discrete measure with weight   at the points   Then the operator

 

maps   to   with norm 1; that is,

 

or more explicitly,

 

for any complex a, b. (See Beckner's paper for the proof of his "two-point lemma".)

A sequence of Bernoulli trials edit

The measure   that was introduced above is actually a fair Bernoulli trial with mean 0 and variance 1. Consider the sum of a sequence of n such Bernoulli trials, independent and normalized so that the standard deviation remains 1. We obtain the measure   which is the n-fold convolution of   with itself. The next step is to extend the operator C defined on the two-point space above to an operator defined on the (n + 1)-point space of   with respect to the elementary symmetric polynomials.

Convergence to standard normal distribution edit

The sequence   converges weakly to the standard normal probability distribution   with respect to functions of polynomial growth. In the limit, the extension of the operator C above in terms of the elementary symmetric polynomials with respect to the measure   is expressed as an operator T in terms of the Hermite polynomials with respect to the standard normal distribution. These Hermite functions are the eigenfunctions of the Fourier transform, and the (qp)-norm of the Fourier transform is obtained as a result after some renormalization.

See also edit

References edit

  1. ^ Iwo Bialynicki-Birula. Formulation of the uncertainty relations in terms of the Renyi entropies. arXiv:quant-ph/0608116v2
  2. ^ K.I. Babenko. An inequality in the theory of Fourier integrals. Izv. Akad. Nauk SSSR, Ser. Mat. 25 (1961) pp. 531–542 English transl., Amer. Math. Soc. Transl. (2) 44, pp. 115–128
  3. ^ W. Beckner, Inequalities in Fourier analysis. Annals of Mathematics, Vol. 102, No. 6 (1975) pp. 159–182.