# ba space

In mathematics, the ba space ${\displaystyle ba(\Sigma )}$ of an algebra of sets ${\displaystyle \Sigma }$ is the Banach space consisting of all bounded and finitely additive signed measures on ${\displaystyle \Sigma }$. The norm is defined as the variation, that is ${\displaystyle \|\nu \|=|\nu |(X).}$ (Dunford & Schwartz 1958, IV.2.15)

If Σ is a sigma-algebra, then the space ${\displaystyle ca(\Sigma )}$ is defined as the subset of ${\displaystyle ba(\Sigma )}$ consisting of countably additive measures. (Dunford & Schwartz 1958, IV.2.16) The notation ba is a mnemonic for bounded additive and ca is short for countably additive.

If X is a topological space, and Σ is the sigma-algebra of Borel sets in X, then ${\displaystyle rca(X)}$ is the subspace of ${\displaystyle ca(\Sigma )}$ consisting of all regular Borel measures on X. (Dunford & Schwartz 1958, IV.2.17)

## Properties

All three spaces are complete (they are Banach spaces) with respect to the same norm defined by the total variation, and thus ${\displaystyle ca(\Sigma )}$  is a closed subset of ${\displaystyle ba(\Sigma )}$ , and ${\displaystyle rca(X)}$  is a closed set of ${\displaystyle ca(\Sigma )}$  for Σ the algebra of Borel sets on X. The space of simple functions on ${\displaystyle \Sigma }$  is dense in ${\displaystyle ba(\Sigma )}$ .

The ba space of the power set of the natural numbers, ba(2N), is often denoted as simply ${\displaystyle ba}$  and is isomorphic to the dual space of the space.

### Dual of B(Σ)

Let B(Σ) be the space of bounded Σ-measurable functions, equipped with the uniform norm. Then ba(Σ) = B(Σ)* is the continuous dual space of B(Σ). This is due to Hildebrandt (1934) and Fichtenholtz & Kantorovich (1934). This is a kind of Riesz representation theorem which allows for a measure to be represented as a linear functional on measurable functions. In particular, this isomorphism allows one to define the integral with respect to a finitely additive measure (note that the usual Lebesgue integral requires countable additivity). This is due to Dunford & Schwartz (1958), and is often used to define the integral with respect to vector measures (Diestel & Uhl 1977, Chapter I), and especially vector-valued Radon measures.

The topological duality ba(Σ) = B(Σ)* is easy to see. There is an obvious algebraic duality between the vector space of all finitely additive measures σ on Σ and the vector space of simple functions (${\displaystyle \mu (A)=\zeta \left(1_{A}\right)}$ ). It is easy to check that the linear form induced by σ is continuous in the sup-norm iff σ is bounded, and the result follows since a linear form on the dense subspace of simple functions extends to an element of B(Σ)* iff it is continuous in the sup-norm.

### Dual of L∞(μ)

If Σ is a sigma-algebra and μ is a sigma-additive positive measure on Σ then the Lp space L(μ) endowed with the essential supremum norm is by definition the quotient space of B(Σ) by the closed subspace of bounded μ-null functions:

${\displaystyle N_{\mu }:=\{f\in B(\Sigma ):f=0\ \mu {\text{-almost everywhere}}\}.}$

The dual Banach space L(μ)* is thus isomorphic to

${\displaystyle N_{\mu }^{\perp }=\{\sigma \in ba(\Sigma ):\mu (A)=0\Rightarrow \sigma (A)=0{\text{ for any }}A\in \Sigma \},}$

i.e. the space of finitely additive signed measures on Σ that are absolutely continuous with respect to μ (μ-a.c. for short).

When the measure space is furthermore sigma-finite then L(μ) is in turn dual to L1(μ), which by the Radon–Nikodym theorem is identified with the set of all countably additive μ-a.c. measures. In other words, the inclusion in the bidual

${\displaystyle L^{1}(\mu )\subset L^{1}(\mu )^{**}=L^{\infty }(\mu )^{*}}$

is isomorphic to the inclusion of the space of countably additive μ-a.c. bounded measures inside the space of all finitely additive μ-a.c. bounded measures.

## References

• Diestel, Joseph (1984), Sequences and series in Banach spaces, Springer-Verlag, ISBN 0-387-90859-5, OCLC 9556781.
• Diestel, J.; Uhl, J.J. (1977), Vector measures, Mathematical Surveys, 15, American Mathematical Society.
• Dunford, N.; Schwartz, J.T. (1958), Linear operators, Part I, Wiley-Interscience.
• Hildebrandt, T.H. (1934), "On bounded functional operations", Transactions of the American Mathematical Society, 36 (4): 868–875, doi:10.2307/1989829, JSTOR 1989829.
• Fichtenholz, G; Kantorovich, L.V. (1934), "Sur les opérations linéaires dans l'espace des fonctions bornées", Studia Mathematica, 5: 69–98.
• Yosida, K; Hewitt, E (1952), "Finitely additive measures", Transactions of the American Mathematical Society, 72 (1): 46–66, doi:10.2307/1990654, JSTOR 1990654.