In a 2000 paper titled "Generalized Schmidt Decomposition and Classification of Three-Quantum-Bit States"[ 1] Acín et al. described a way of separating out one of the terms of a general tripartite quantum state. This can be useful in considering measures of entanglement of quantum states.
General decomposition
edit
For a general three-qubit state
|
ψ
⟩
=
a
000
|
0
A
⟩
|
0
B
⟩
|
0
C
⟩
+
a
001
|
0
A
⟩
|
0
B
⟩
|
1
C
⟩
+
a
010
|
0
A
⟩
|
1
B
⟩
|
0
C
⟩
+
a
011
|
0
A
⟩
|
1
B
⟩
|
1
C
⟩
+
a
100
|
1
A
⟩
|
0
B
⟩
|
0
C
⟩
+
a
101
|
1
A
⟩
|
0
B
⟩
|
1
C
⟩
+
a
110
|
1
A
⟩
|
1
B
⟩
|
0
C
⟩
+
a
111
|
1
A
⟩
|
1
B
⟩
|
1
C
⟩
{\displaystyle |\psi \rangle =a_{000}\left|0_{A}\right\rangle \left|0_{B}\right\rangle \left|0_{C}\right\rangle +a_{001}\left|0_{A}\right\rangle \left|0_{B}\right\rangle \left|1_{C}\right\rangle +a_{010}\left|0_{A}\right\rangle \left|1_{B}\right\rangle \left|0_{C}\right\rangle +a_{011}\left|0_{A}\right\rangle \left|1_{B}\right\rangle \left|1_{C}\right\rangle +a_{100}\left|1_{A}\right\rangle \left|0_{B}\right\rangle \left|0_{C}\right\rangle +a_{101}\left|1_{A}\right\rangle \left|0_{B}\right\rangle \left|1_{C}\right\rangle +a_{110}\left|1_{A}\right\rangle \left|1_{B}\right\rangle \left|0_{C}\right\rangle +a_{111}\left|1_{A}\right\rangle \left|1_{B}\right\rangle \left|1_{C}\right\rangle }
there is no way of writing
|
ψ
A
,
B
,
C
⟩
≠
λ
0
|
0
A
′
⟩
|
0
B
′
⟩
|
0
C
′
⟩
+
λ
1
|
1
A
′
⟩
|
1
B
′
⟩
|
1
C
′
⟩
{\displaystyle \left|\psi _{A,B,C}\right\rangle \neq {\sqrt {\lambda _{0}}}\left|0_{A}^{\prime }\right\rangle \left|0_{B}^{\prime }\right\rangle \left|0_{C}^{\prime }\right\rangle +{\sqrt {\lambda _{1}}}\left|1_{A}^{\prime }\right\rangle \left|1_{B}^{\prime }\right\rangle \left|1_{C}^{\prime }\right\rangle }
but there is a general transformation to
|
ψ
⟩
=
λ
1
|
0
A
⟩
|
0
B
⟩
|
0
C
⟩
+
|
1
A
⟩
(
λ
2
e
i
ϕ
|
0
B
⟩
|
0
C
⟩
+
λ
3
|
0
B
⟩
|
1
C
⟩
+
λ
4
|
1
B
⟩
|
0
C
⟩
+
λ
5
|
1
B
⟩
|
1
C
⟩
)
{\displaystyle |\psi \rangle =\lambda _{1}|0_{A}^{}\rangle |0_{B}^{}\rangle |0_{C}^{}\rangle +|1_{A}^{}\rangle (\lambda _{2}e^{i\phi }|0_{B}^{}\rangle |0_{C}^{}\rangle +\lambda _{3}|0_{B}^{}\rangle |1_{C}^{}\rangle +\lambda _{4}|1_{B}^{}\rangle |0_{C}^{}\rangle +\lambda _{5}|1_{B}^{}\rangle |1_{C}^{}\rangle )}
where
λ
i
≥
0
,
∑
i
=
1
5
λ
i
2
=
1
{\displaystyle \lambda _{i}\geq 0,\sum _{i=1}^{5}\lambda _{i}^{2}=1}
.